• Title/Summary/Keyword: IoT module

Search Result 186, Processing Time 0.087 seconds

Measurement of LPWA communication coverage in NLOS environment (NLOS 환경에서 LPWA 통신 커버리지 측정)

  • Kwon, Hyuk;Jin, Kyoung-Bog;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.591-593
    • /
    • 2019
  • LPWA has a small amount of data that can be transmitted at one time, but it can collect a very wide range of information, so it is suitable for gathering information of apartment meter or collecting data intermittently sent from industrial site. However, most of the application studies on LPWA are limited to outdoor, especially LOS environment, so it is difficult to collect information for application to apartment and industrial sites. In this paper, we have measured the communication coverage within the building, which is a NLOS environment, so that LPWA communication can be applied to apartments and industrial sites. For the experiment, LoRa module was created using sx1276, Class A was applied, and the spread factor was changed for each layer. As a result, in case of spreading factor 7 that shows increasing error and losses from the 7 floor, but the in case of spreading factor 12, the data could be seamlessly received even on the 9th floor without error and losses.

  • PDF

Blockchain (A-PBFT) Based Authentication Method for Secure Lora Network (안전한 Lora 네트워크를 위한 블록체인(A-PBFT) 기반 인증 기법)

  • Kim, Sang-Geun
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.17-24
    • /
    • 2022
  • Lora, a non-band network technology of the long-distance wireless standard LPWAN standard, uses ABP and OTTA methods and AES-128-based encryption algorithm (shared key) for internal terminal authentication and integrity verification. Lora's recent firmware tampering vulnerability and shared-key encryption algorithm structure make it difficult to defend against MITM attacks. In this study, the consensus algorithm(PBFT) is applied to the Lora network to enhance safety. It performs authentication and PBFT block chain creation by searching for node groups using the GPS module. As a result of the performance analysis, we established a new Lora trust network and proved that the latency of the consensus algorithm was improved. This study is a 4th industry convergence study and is intended to help improve the security technology of Lora devices in the future.

A Study on IoT and Cloud-based Real-time Bridge Height Measurement Service (사물인터넷과 클라우드 기반의 실시간 교량 높이 계측 서비스 연구)

  • Choi, Cha-Hwan;Cheon, Young-Man;Jeong, Seung-Hun;Tcha, Dek-Kie;Lee, Young-Jae
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.145-157
    • /
    • 2017
  • Currently, the height of ships that can pass under Busan Harbor Bridge is limited to 60m or shorter, so that large-sized ships of 60m or taller cannot use Busan Harbor international passenger terminal. Accordingly, this study has developed a service which measures continuously the change of bridge height by water level changes and provides such in real-time for safe bridge passage of large-sized ships of 60m or taller. The measurement system comprised of high-precision laser distance measurement device, GPS sensor, optical module, and damping structure is used to measure the bridge height change according to tide level changes, and the measured information is provided in real-time through cloud-based mobile app. Also, in order to secure objective bridge height data for changes to height limits and navigation supports, the observation data was analyzed and forecast model was drawn. As a result, it became an objective evidence to revise the passage height rules of the Busan Port Bridge from 60 meters to 63 meters.

Study on Development of LED Camping Light Design Based on IOT and Emotional Lighting Contents (IOT 및 감성조명 콘텐츠 기반의 LED 캠핑등 디자인 개발에 관한 연구)

  • Kim, Hee-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.332-342
    • /
    • 2018
  • This study is aimed at suggesting information about technical choices for designing LED camping lights based on emotional lighting contents of integrated IOT and design areas which take a central role in creation and knowledge based industries and the procedure for materializing them. 'i-Light,' a portable LED camping light, is 'connected lighting' connecting men, space and emotion and a smart camping light based on IOT and emotional lighting contents. 'i-Light' has two functions. One is about lighting for adjusting color and color temperature naturally and the other is about safety for detecting harmful gases. 'i-Light' also has various emotional functions for experiencing interaction and taste of light. For the purpose, portable LED camping lights were designed, first of all, and then a highly color rendering/full-color lighting module, a smart sensor module and an IOT device platform were developed. In addition, efforts were made to establish detailed data about emotional lighting contents and to develop a Web application based on them. Finally, prototypes of portable LED camping lights were made to get a test bench and usability evaluation from related organizations. According to the results, all of 12 developed emotional lighting contents and three IOT safety sensors were suitable and prototypes were satisfactory. This paper will suggest a direction about actual technical choices for development of contents and products integrating artificial intelligence and big data and about the procedure for materializing them.

A Study of Modularity in the Perspective of Standardization: A Comparative Analysis of Electronic and Automotive Industries (표준화 정책 측면에서 모듈성 연구: 전자 산업과 자동차 산업 비교 분석)

  • Kim, Dong-hyu;Kang, Byung-Goo;Kim, Chulsik
    • Journal of Technology Innovation
    • /
    • v.23 no.3
    • /
    • pp.169-199
    • /
    • 2015
  • Information and communication technologies (ICT) have been combined with products from other industries to provide new functionality, as recently shown in the cases of Internet of Things (IoT). Modularity assumes a crucial role in such technological convergence, and has impacts on the relationship between organizations as well as competition within an industry. Interface standards, which ensure the connectivity between modules, serve as a critical factor in the process by which modularity affects organization systems and industry structure. To understand the aforementioned phenomenon, we studied modularity and interface standards with a focus on the interaction between technology and organization systems and subsequent changes in industrial dynamics. This paper examines previous literature on modularity and interface standards in the aspects of product architecture, organization systems, and institutional factors. With this analytical framework, we conducted a comparative analysis of electronic and automotive industries to derive implications for standardization policy. This research has shown the significance of external open interface standards in shaping an industrial landscape where a variety of module producers horizontally compete. It also advises that policymakers take into account product characteristics, engagement of leading firms in an industry, and institutional factors such as WTO law in the design of standardization policy.

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.