• Title/Summary/Keyword: IoT Sensor Network

Search Result 325, Processing Time 0.025 seconds

A Study to Apply A Fog Computing Platform (포그 컴퓨팅 플랫폼 적용성 연구)

  • Lee, Kyeong-Min;Lee, Hoo-Myeong;Jo, Min-Sung;Choi, Hoon
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.6
    • /
    • pp.60-71
    • /
    • 2019
  • As IoT systems such as smart farms and smart cities become popular, a large amount of data collected from many sensor nodes is sent to a server in the Internet, which causes network traffic explosion, delay in delivery, and increase of server's workload. To solve these problems, the concept of fog computing has been proposed to store data between IoT systems and servers. In this study, we implemented a software platform of the fog node and applied it to the prototype smart farm system in order to check whether the problems listed above can be solved when using the fog node. When the fog node is used, the time taken to control an IoT device is lower than the response time of the existing IoT device-server case. We confirmed that it can also solve the problem of the Internet traffic explosion and the workload increase in the server. We also showed that the intelligent control of IoT system is feasible by having the data visualization in the server and real time remote control, emergency notification in the fog node as well as data storage which is the basic capability of the fog node.

Research on a Solution for Efficient ECG Data Transmission in IoT Environment (사물 인터넷 환경에서의 효율적인 ECG 데이터 전송 방안에 관한 연구)

  • Cho, Gyoun Yon;Lee, Seo Joon;Lee, Tae Ro
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.371-376
    • /
    • 2014
  • Consistently collecting a variety of vital signs is crucial in u-Healthcare. In order to do so, IoT is being considered as a top solution nowadays as an efficient network environment between the sensor and the server. This paper proposes a transmission method and compression algorithm which are appropriate for IoT environment. Results were compared to widely used compression methods, and were compared to other prior researches. The results showed that the compression ratio of our proposed algorithm was 11.7.

Channel Grade Method of multi-mode mobile device for avoiding Interference at WPAN (WPAN에서 간섭을 피하기 위한 멀티모드 단말기 채널등급 방법)

  • Jung, Sungwon;Kum, Donghyun;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.91-98
    • /
    • 2015
  • There is a new evolution in technological advancement taking place called the Internet of Things (IoT), The IoT enables physical world objects in our surrounding to be connected to the Internet. ISM (Industrial Scientific Medical) band that is 2.4GHz band authorized free of charge is being widely used for smart devices. Accordingly studies have been continuously conducted on the possibility of coexistence among nodes using ISM band. In particular, the interference of IEEE 802.11b based Wi-Fi devices using overlapping channel during communication among IEEE 802.15.4 based wireless sensor nodes suitable for low-power, low-speed communication using ISM band. Because serious network performance deterioration of wireless sensor networks. In this paper, we will propose an algorithm that identifies the possibility of using more accurate channels by mixing utilization of interference signal and RSSI (Received Signal Strength Indicator) Min/Max/Activity of Interference signal by wireless sensor nodes. In addition, it will verify our algorithm by using OPNET Network verification simulator.

Reducing Cybersecurity Risks in Cloud Computing Using A Distributed Key Mechanism

  • Altowaijri, Saleh M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.1-10
    • /
    • 2021
  • The Internet of things (IoT) is the main advancement in data processing and communication technologies. In IoT, intelligent devices play an exciting role in wireless communication. Although, sensor nodes are low-cost devices for communication and data gathering. However, sensor nodes are more vulnerable to different security threats because these nodes have continuous access to the internet. Therefore, the multiparty security credential-based key generation mechanism provides effective security against several attacks. The key generation-based methods are implemented at sensor nodes, edge nodes, and also at server nodes for secure communication. The main challenging issue in a collaborative key generation scheme is the extensive multiplication. When the number of parties increased the multiplications are more complex. Thus, the computational cost of batch key and multiparty key-based schemes is high. This paper presents a Secure Multipart Key Distribution scheme (SMKD) that provides secure communication among the nodes by generating a multiparty secure key for communication. In this paper, we provide node authentication and session key generation mechanism among mobile nodes, head nodes, and trusted servers. We analyzed the achievements of the SMKD scheme against SPPDA, PPDAS, and PFDA schemes. Thus, the simulation environment is established by employing an NS 2. Simulation results prove that the performance of SMKD is better in terms of communication cost, computational cost, and energy consumption.

A Cyber-Physical Information System for Smart Buildings with Collaborative Information Fusion

  • Liu, Qing;Li, Lanlan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1516-1539
    • /
    • 2022
  • This article shows a set of physical information fusion IoT systems that we designed for smart buildings. Its essence is a computer system that combines physical quantities in buildings with quantitative analysis and control. In the part of the Internet of Things, its mechanism is controlled by a monitoring system based on sensor networks and computer-based algorithms. Based on the design idea of the agent, we have realized human-machine interaction (HMI) and machine-machine interaction (MMI). Among them, HMI is realized through human-machine interaction, while MMI is realized through embedded computing, sensors, controllers, and execution. Device and wireless communication network. This article mainly focuses on the function of wireless sensor networks and MMI in environmental monitoring. This function plays a fundamental role in building security, environmental control, HVAC, and other smart building control systems. The article not only discusses various network applications and their implementation based on agent design but also demonstrates our collaborative information fusion strategy. This strategy can provide a stable incentive method for the system through collaborative information fusion when the sensor system is unstable in the physical measurements, thereby preventing system jitter and unstable response caused by uncertain disturbances and environmental factors. This article also gives the results of the system test. The results show that through the CPS interaction of HMI and MMI, the intelligent building IoT system can achieve comprehensive monitoring, thereby providing support and expansion for advanced automation management.

A study on Improvement of BIS System using Bus congestion (버스 혼잡도를 이용한 BIS 시스템 개선방안 연구)

  • Joo, Young-Hwan;Lim, Seung-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.211-215
    • /
    • 2016
  • In this paper, we utilize a service provided by the existing bus information system. To improve the limitations of the bus information system the information provided to the passenger using the bus. By applying the IoT sensor network system. congestion information of the bus provided to customer. Provides information in addition to the existing bus congestion information to passengers wishing to use public transport from the smartphone app with an existing information system. The bus congestion information in addition to the existing information to passengers who want to use public transport provided in the existing information system and smartphone apps. Prevent accidents that might occur due to congestion in the bus, efficient and convenient way to propose an improved bus information system for public transport. Developed a prototype system using the IOT sensor network verified the proposed method.

The design of Smart flowerpot management system (스마트 화분관리 시스템 설계)

  • Jeon, Pil-kyeong;Park, Suhyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.133-135
    • /
    • 2015
  • This paper is about the design of flowerpot management system which allows you to manage the flowerpot more efficiently and conveniently using Internet of Things when you start to grow plants. IoT connects all things to the network to provide various services to users, it has recently been focused on the center of the IT convergence techniques. So by using the realization sensor based IoT technology the need for research and development of IoT technologies were designed for the system. Basically, Device is using soil humidity sensor and Arduino, Android smart phone and smart light bulb. Transmit the humidity value of the flowerpot that measured by the sensor in a wireless communication, by controlling the state according to the value of the humidity, users can be provided a visual information and set up a flowerpot management and plan.

  • PDF

Technical Issues and Solutions for Developing IoT Applications (IoT 애플리케이션 개발의 기술적 이슈 및 솔루션)

  • Shin, Dong Ha;Han, Seung Ho;La, Hyun Jung;Kim, Soo Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.3
    • /
    • pp.99-110
    • /
    • 2015
  • Internet-of-Things(IoT) is the computing paradigm converged with different technologies, where diverse devices are connected via the wireless network, acquire environmental information from their equipped sensors, and actuated. IoT applications typically provide smart services to users by interacting with multiple devices connected to the network and are designed by integrating multiple technologies such as sensor network, communication technologies, and software engineering. Moreover, since the concept of IoT has been introduced recently, most of the researches are in the beginning step, which is too early to be practically applied. Due to these facts, developing IoT application results in unconventional technical challenges which have not been observed in typical software applications. And, it is not straightforward to apply conventional project guidelines to IoT application development projects. Hence, there can be many difficulties to successfully complete the projects. Therefore, for successful completion of the projects, we analyze technical challenges occurring in all phases of the project lifecycle, i.e. project preparation stage and development stage. And, we propose the effective solutions to overcome the issues. To verify identified issues and presented solutions, we present the result of applying the solutions to an IoT application development. Through the case study, we evaluate how reasonable the unconventional technical issues are generated and analyze effectiveness of applying the solutions to the application.

Dynamic Service Composition and Development Using Heterogeneous IoT Systems

  • Ryu, Minwoo;Yun, Jaeseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.91-97
    • /
    • 2017
  • IoT (Internet of Things) systems are based on heterogeneous hardware systems of different types of devices interconnected each other, ranging from miniaturized and low-power wireless sensor node to cloud servers. These IoT systems composed of heterogeneous hardware utilize data sets collected from a particular set of sensors or control designated actuators when needed using open APIs created through abstraction of devices' resources associated to service applications. However, previously existing IoT services have been usually developed based on vertical platforms, whose sharing and exchange of data is limited within each industry domain, for example, healthcare. Such problem is called 'data silo', and considered one of crucial issues to be solved for the success of establishing IoT ecosystems. Also, IoT services may need to dynamically organize their services according to the change of status of connected devices due to their mobility and dynamic network connectivity. We propose a way of dynamically composing IoT services under the concept of WoT (Web of Things) where heterogeneous devices across different industries are fully integrated into the Web. Our approach allows developers to create IoT services or mash them up in an efficient way using Web objects registered into multiple standardized horizontal IoT platforms where their resources are discoverable and accessible. A Web-based service composition tool is developed to evaluate the practical feasibility of our approach under real-world service development.

Implementation of a Sensor Network in a Welding Workplace Based on IoT for Smart Shipyards (스마트 조선소를 위한 사물인터넷 기반 용접 작업장 센서네트워크 구축)

  • Kim, Hyun Sik;Lee, Gi Seung;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.433-439
    • /
    • 2021
  • In this paper, we propose a method to implement an IoT-based sensor network for each workplace of a shipyard. Here, at the most common welding workplace in shipyards, the shipbuilding blocks are used as a communication medium to transmit information such as the worker's location, welding progress, and working hour to a server using LoRa and powerline communication. To achieve the data communication, inductive couplers and hybrid modems have been manufactured and installed on wire feeders and pin jigs to establish a sensor network. As a result of field test, the proposed system shows a success rate of data transmission and a rate of successful recognition of worker's location of about 98% or more. In addition, the process management system platform can record and display the work process data generated at the field in real time. The proposed system can be a starting point for enhancing the competitiveness of Korean shipbuilding industry through the establishment of a smart shipyard.