• Title/Summary/Keyword: Inverter speed control

Search Result 619, Processing Time 0.025 seconds

Development of electric Four Wheel Drive System (e-4WD 시스템 개발)

  • Jo, Hee Young
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • e-4WD(Electric-4WD) system is a 4WD(4-Wheel Drive) System that can transform a car into a Hybrid System. e-4WD consists of a Motor, Inverter, Speed reducer and Clutch. The Motor, Speed reducer and Clutch are installed on the rear sub-frame as a chassis module type. The inverter is installed separately. Compared to a mechanical 4WD, the e-4WD system has many advantages. For example, the reduced number of drivetrain components makes better use of the space. Driving with a motor only at low speed improves fuel economy and reduces exhaust gas. Engine downsizing is available because the motor assists the engine. The performance of a conventional HEV(Hybrid Electric Vehicle) system can also be maintained. This paper proposes the specifications of components and the control logic for an e-4WD System. And the effect of the e-4WD system is proven using a test vehicle equipped with components under various test conditions.

Recent Progress Trend in Motor and Inverter for Hybrid Vehicle (하이브리드 자동차용 모터 및 인버터 최신 동향 분석)

  • Kim, Sung-Jin;Hong, Sueng-Min;Nam, Kwang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.381-387
    • /
    • 2016
  • Many efforts have focused on the improvement of power density and efficiency by downsizing the motor and inverter. Recently, Toyota, Honda, and GM realized that the compact-sized motor uses the hairpin structure with increased space factor. Reducing the maximum torque from high-speed technique also makes it possible to design the high-power density model. Toyota and Honda used the newly developed power semiconductor IGBT to decrease conduction loss for high-efficiency inverter. In particular, Toyota used the boost converter to increase the DC link voltage for high efficiency in low-torque high-speed region. Toyota and GM also used the double-sided cooling structure for miniaturization of inverter for high-power density.

Torque Ripple Suppression Method for BLDCM Drive Based on Four-Switch Three-Phase Inverter

  • Pan, Lei;Sun, Hexu;Wang, Beibei;Su, Gang;Wang, Xiuli;Peng, Guili
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.974-986
    • /
    • 2015
  • A novel inverter fault-tolerant control scheme is proposed to drive brushless DC motor. A fault-tolerant inverter and its three fault-tolerant schemes (i.e., phase A fault-tolerant, phase B fault-tolerant, and phase C fault-tolerant) are analyzed. Eight voltage vectors are summarized and a voltage vector selection table is used in the control scheme to improve the midpoint current of the split capacitors. A stator flux observer is proposed. The observer can improve flux estimation, which does not require any speed adaptation mechanism and is immune to speed estimation error. Global stability of the flux observer is guaranteed by the Lyapunov stability analysis. A novel stator resistance estimator is incorporated into the sensorless drive to compensate for the effects of stator resistance variation. DC offset effects are mitigated by introducing an integral component in the observer gains. Finally, a control system based on the control scheme is established. Simulation and experiment results show that the method is correct and feasible.

Efficiency Improvement of Inverter Fed Induction Machine System Using Neural Network (신경망을 이용한 유도전동기-인버터 시스템의 효율향상)

  • Ryu, Joon-Hyoung;Lee, Seung-Chul;Choy, Ick;Kim, K.B.;Lee, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1984-1986
    • /
    • 1998
  • This paper presents an optimal efficiency control for the inverter fed induction machine system using neural network. The motor speed and the load torque vary the efficiency characteristics of an induction motor. The optimal slip frequency has nonlinearity varied by the load torque as well as the motor speed. The induction motor is driven using the inverter system and the indirect vector control method which input is slip frequency. The neural network for estimating the optimal slip frequency has two input layer(the motor speed and the load torque) and one output layer(the optimal slip frequency that minimize the input power). Learning algorithm of the neural network is the back-propagation. Using the equivalent circuit including the nonlinearity of the induction motor, the loss reduction is analyzed quantitatively. Experimental results are shown noticeable power savings by proposed scheme in high speed and light load conditions.

  • PDF

A Study on Speed Control and Characteristics of I.M. Having Linear Transfer Function (선형화된 유동전동기의 특성 및 속도제어에 관한 연구)

  • Yoon, Byung-Do;Kim, Dae-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.337-340
    • /
    • 1988
  • This paper describes a fast response control of an inverter-fed induction Motor. The transfer function of the induction Motor controlled by this control method ie very similar to that of a separately exited dc motor. This paper presents the linear control method for the transfer function in the control of an inverter-fed induction motor, Acceding to this control, the response speed is correctly grasped faking the leakage inductances into account and the inverter-fed induction motor is controlled with fast response.

  • PDF

High Efficiency Drive of Dual Inverter Driven SPMSM with Parallel Split Stator

  • Lee, Yongjae;Ha, Jung-Ik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.216-224
    • /
    • 2013
  • This paper describes dual inverter drive for a fractional-slot concentrated winding permanent magnet synchronous machine (PMSM). PMSMs are widely used in many applications from small servo motors to few megawatts generators thanks to its high efficiency and torque density. Especially, fractional-slot concentrated winding PMSM is very popular in the applications where wide operation range is required because it shows very wide constant power speed ratios. High speed operation, however, requires lots of negative daxis current for reducing back-EMF regardless of output torque. Field weakening current does not contribute to the torque generation in surface mounted PMSM case and causes inverter and copper loss. To reduce the losses from field weakening current, this paper proposes PMSM with split stator and parallel dual inverter drive. Proposed parallel dual inverter drive reduces back-EMF and enables efficient drive at high speed and light load situation. Control strategy of proposed dual inverter system is established through loss analysis and simulation. Proposed concept is verified with practical experiment.

Modeling of a Variable Speed Wind Turbine in Dynamic Analysis

  • Kim, Seul-Ki;Kim, Eung-Sang;Jeon, Jin-Hong
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.51-57
    • /
    • 2004
  • This paper describes the dynamic performance of a variable speed wind turbine system responding to a wide variety of wind variations. Modeling of the wind generation using power electronics interface is proposed for dynamic simulation analysis. Component models and equations are addressed and their incorporations into a transient analysis program, PSCAD/EMTDC are provided. A wind model of four components is described, which enables observing dynamic behaviors of the wind turbine resulting from wind variations. Controllable power inverter strategies are intended for capturing the maximum power under variable speed operation and maintaining reactive power generation at a pre-determined level for constant power factor control or voltage regulation control. The components and control schemes are modeled by user-defined functions. Simulation case studies provide variable speed wind generator dynamic performance for changes in wind speed

Countermeasure on the Suppression of Micro Surge and Noise for a Induction Motor Driven by Commercial Inverter (상용인버터 구동 유도전동기의 마이크로 서지 및 노이즈 억제에 관한 대책)

  • Kim, Duk-Hyun;Choi, Jeong-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.111-117
    • /
    • 2008
  • Generally, speed control for Induction motor widely used in industrial field is accomplished by commercial inverter. Induction motor driven by commercial inverter causes the micro surge voltage because of high speed switching of inverter. Micro surge brings about not only the breakdown of motor but also noise in PLC control system. And they court the enormous interference in activity for production. In this paper, we suggest the suppressible countermeasure for the breakdown of motor after the consideration of productive mechanism about micro surge. Experiment is performed by inverter with LCR filler in its output terminal. As a result, we confirmed that micro surge voltage is reduced. And the suppressible countermeasure for the noise of PLC control system is suggested by theoretical consideration.

Angle Control for SRCI Fed Induction Motor Drive (SRCI 구동 유도전동기 시스템의 Angle Control)

  • 김인동;조규형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.12
    • /
    • pp.854-861
    • /
    • 1988
  • The current source inverter-fed induction motor(CSIM) drive is widely used in industry because of its four quadrant operation, fuseless protection, fuseless protection, and ruggedness. the CSIM drive system, however, has shortcomins such as slow response and dynamic stability to load torque disturbance and reference speed change. Such a disadvantages can be compensated considerably by means of introducing additional angle angle control loop. The angle control method is dependent upon the inverter type. In this paper, simultaneus recovery and commutation inverter(SRCI) which is developed recently is considered.

  • PDF

A Study on the Starter Control of the Turbo Generator (터보 제너레이터의 시동기 제어에 관한 연구)

  • 박승엽;노민식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.286-293
    • /
    • 2004
  • This paper presents the result of a study on the starter control for a turbo generator. Because a starter in gear box type turbo-generator system is composed of gearbox and brush DC motor, it should be replaced with High Speed Generator(HSG)) in HSG type Turbo-generator. There-ore, it is necessary to design a new starting algorithm and starter. In gearbox type system, brush DC motor is rotated to the designed speed using low voltage-high current battery power. After brush DC motor speed is increased to several times by gearbox, gas turbine engine can be rotated to designed starting speed. If we implement a starter with High Speed Generator(HSG), it is necessary to drive high-speed generator to high-speed motor. High-speed generator with permanent magnet on rotor has a low leakage inductance fur driving high-speed rotation, and it is necessary high DC link voltage for inverter when High-speed generator is driven to high speed. This paper presents result of development of the boost converter for converting high voltage DC from low battery voltage and design of the inverter for controlling a high frequency current to be injected to motor winding. Also, we show performance of the designed starter by driving the turbo generator.