• Title/Summary/Keyword: Inverter Filter

Search Result 529, Processing Time 0.034 seconds

Design and Application of a Single Phase Multilevel Inverter Suitable for using as a Voltage Harmonic Source

  • Beser, Ersoy;Arifoglu, Birol;Camur, Sabri;Beser, Esra Kandemir
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 2010
  • This paper presents a single phase multilevel inverter for using as a voltage harmonic source. First, a single phase multilevel inverter system is presented and the structural parts of the inverter are described. In order to obtain multilevel output voltage waveforms, a switching strategy based on calculating switching angles is explained and an improved formula for determining switching angles is given. Simulation and experimental results of multilevel voltage waveforms are given for 15, 31 and 127 levels. The proposed topology does not only produce output voltages with low THD values. It also produces the required harmonic components on the output voltage. For this purpose, equations for switching angles are constituted and the switching functions are obtained. These angles control the output voltage as well as provide the required specific harmonics. The proposed inverter structure is simulated for various functions with the required harmonic components. The THD values of the output voltage waves are calculated. The simulated functions are also realized by the proposed inverter structure. By using a harmonic analyzer, the harmonic spectrums, which belong to the output voltage forms, are found and the THD values are measured. Simulation and experimental results are given for the specific functions. The proposed topology produces perfectly suitable results for obtaining the specific harmonic components. Therefore, it is possible to use the structure as a voltage harmonic source in various applications.

High-efficiency fuel-cell power inverter with soft-switching resonant technique (Soft-switching resonant technique을 적용한 고효율 PEMFC inverter)

  • Han, K.H.;Cho, Y.R.;Baek, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.326-328
    • /
    • 2005
  • In order to reduce the capital and overall operating cost of a fuel-cell system, a high-efficiency fuel-cell power inverter with a simple framework is required. The high-order two-inductance two-capacitance (LLCC) resonant technique is adopted in this study to implement a low-frequency 60-Hz sine wave voltage inverter utilized in the proton exchange membrane fuel-cell (PEMFC) system. The methodology for inverting dc voltage into low-frequency ac boltage is usually generated by the pulse-width-modulation (PWM) technique. However, the PWM-type inverter output has high-frequency harmonic components. Although an adequately designed filter could be utilized to overcome this problem, there are still some undesirable effects introduced by the high-frequency switching loss, electromagnetic-interference, harmonic current, and load variation. A novel power inverter via the LLCC resonant technique is designed for inverting dc voltage into 60-Hz ac sine wave voltage in the PEMFC system. This circuit scheme has the merits of low harmonic components, soft switching, high efficiency, and simplified implementation. The effectiveness of the proposed resonant inverter used for the PEMFC system is verified by numerical simulations and experimental results.

  • PDF

An Adaptive Digital Notch Filter for Stabilization of Single-Phase Grid-Connected Inverters With LCL Filter (LCL 필터가 결합된 단상 계통연계형 인버터의 안정화를 위한 적응형 디지털 노치 필터)

  • Heo, Jin-Yong;Kim, Hak-Soo;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.307-314
    • /
    • 2021
  • Even though the LCL filters have superior harmonic attenuation ability to L filters, stability has always been an issue. The system could be unstable because of the resonance phenomenon, especially when digital controller is used. Adding a notch filter to the compensator is one approach to solve the problem. Resonance phenomenon can be inhibited by aligning notch frequency to system resonance frequency. However, resonance frequency variation can be obtained because the actual system has a nonstationary characteristic. Therefore, the system could be unstable, where the system parameters are changed when the conventional notch filter is used. An adaptive digital notch filter that stabilizes the system even system parameters are changed. Simulation and experiment results are provided to verify the validity of the proposed adaptive filter.

Simulator for 3 Phase Induction Motor with LCL Filter and PWM Rectifier (LCL 필터와 PWM 정류기를 이용한 3상 유도전동기의 시뮬레이터)

  • Cho, Kwan Yuhl;Kim, Hag Wone
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.861-869
    • /
    • 2020
  • A dynamo set for a high-power induction motor drive is expensive and needs a long time to manufacture. Therefore, the development of a simulator that functions as the induction motor and load equipment is required. A load simulator of an inverter for a high-power three-phase induction motor consists of a reactor and three-phase PWM inverter. Therefore, it cannot simulate the dynamic characteristics of an induction motor and functions only as a load. In this paper, a real-time simulator is proposed to simulate a model of an induction motor and the load characteristics based on an LCL filter and three-phase PWM rectifier for a three-phase induction motor. The currents of a PWM inverter that simulate the stator currents of the motor are controlled by the inductor currents and capacitor voltages of the LCL filter. The capacitor voltages of the LCL filter simulate the induced voltages in the stator windings by the rotating rotor fluxes of the motor, and the capacitor voltages are controlled by the inductor currents and a PWM rectifier. The rotor currents, the stator and rotor flux linkages, the electromagnetic torque, the slip frequency, and the rotor speed are derived from the inverter currents and the motor parameters. The electrical and mechanical model characteristics and the operation of vector control were verified by MATLAB/Simulink simulation.

A Programmable High-Pass Filter Based Stator Flux Estimation for a Direct Vector Controlled Induction Motor Drive System (프로그램어블 고역필터를 사용한 직접 벡터제어 유도전동기 구동시스템의 고정자 자속 계산)

  • Jeon, Tae-Won;Choe, Myeong-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.48-53
    • /
    • 2000
  • The novel integration method with programmable high-pass filter is suggested in order to solve the problem of integration for stator flux estimation in a stator flux oriented direct vector controlled induction motor drive system. The dc offset in a pure integrator is eliminated using high-pass filter with fixed time constant, and then time constant of programmable high-pass filter is controlled with a inverter frequency for integration in a wide frequency range, considering phase lag and attenuation due to both the hardware low-pass filter and high-pass filter. The proposed method is verified with the experimental results implemented by 32-bit DSP.

  • PDF

Design of an LCL-Filter for Three-Parallel Operation of Power Converters in Wind Turbines

  • Jeong, Hae-Gwang;Yoon, Dong-Keun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.437-446
    • /
    • 2013
  • This paper proposes a design scheme for an LCL-filter used for the three-parallel operation of the power converters in high-capacity wind turbines. The designs of the power devices and grid connected filter are difficult due to the high level voltages and currents in huge-capacity wind turbines. To solve these problem, this paper presents three-parallel operation and LCL-filter design techniques optimized by parallel operation. Furthermore, the design of an inverter side inductance of the LCL-filter is discussed in detail considering the switching modulation method. Simulation and experimental results demonstrate the validity of the designed filter and wind turbines.

Constant Frequency Adjustable Power Active Voltage Clamped Soft Switching High Frequency Inverter using The 4th-Generation Trench-Gate IGBTs

  • Miyauchi T.;Hirota I.;Omori H.;Terai H.;Abdullah Al Mamun;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.236-241
    • /
    • 2001
  • This paper presents a novel prototype of active voltage-clamping capacitor-assisted edge resonant soft switching PWM inverter operating at a constant frequency variable power (VPCF) regulation scheme, which is suitable for consumer high-power induction-heating cooking appliances. New generation IGBT with a trench gate is particularly improved in order to reduce conduction loss due to its lowered saturation voltage characteristics. The soft switching load resonant and quasi-resonant inverter designed distinctively using the latest IGBTs is evaluated from an experimental point of view.

  • PDF

Rotor Fault Detection System for Inverter Driven Induction Motors using Currents Signals and an Encoder

  • Kim, Nam-Hun
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.271-277
    • /
    • 2007
  • In this paper, an induction motor rotor fault diagnosis system using current signals, which are measured using the axis-transformation method is presented. Inverter-fed motor drives, unlike line-driven motor drives, have stator currents which are rich in harmonics and therefore fault diagnosis using stator current is not trivial. The current signals for rotor fault diagnosis need precise and high resolution information, which means the diagnosis system demands additional hardware such as a low pass filter, high resolution ADC, an encoder and additional hardware. Therefore, the proposed axis-transformation method is expected to contribute to a low cost fault diagnosis system in inverter-fed motor drives without the need for any additional hardware. In order to confirm the validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation, using the Park transformation, is compared with the results obtained from the FFT(Fast Fourier Transform).

Low Cost Rotor Fault Detection System for Inverter Driven Induction Motor

  • Kim, Nam-Hun;Choi, Chang-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.500-504
    • /
    • 2007
  • In this paper, the induction motor rotor fault diagnosis system using current signals, which are measured using axis-transformation method, and speed, which is estimated using current information, are presented. In inverter-fed motor drives unlike line-driven motor drives the stator currents have numerous harmonics components and therefore fault diagnosis using stator currents is very difficult. The current and speed signal for rotor fault diagnosis needs to be precise. Also, high resolution information, which means the diagnosis system, demands additional hardware such as low pass filter, high resolution ADC, encoder and etc. Therefore, the proposed axis-transformation and speed estimation method are expected to contribute to low cost fault diagnosis systems in inverter-fed motor drives without the need for an encoder and any additional hardware. In order to confirm validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation using Park transformation and speed estimation method are compared with the results obtained from fast Fourier transforms.

A Study on Inverter for DC Traction Regenerative Power Control with Active Power Filter Ability (능동전력필터 기능이 추가된 지하철 회생 전력 제어용 인버터에 관한 연구)

  • Choi, Chang-Youl;Bae, Chang-Hwan;Jang, Su-Jin;Song, Sang-Hun;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.463-465
    • /
    • 2005
  • This paper proposes a regeneration inverter system, which can regenerate the excessive power form the DC bus line to the AC source for traction systems. The proposed regeneration inverter system for DC traction can reduce harmonics which is a characteristic of the AC current source. The simulation was composed as a prototype model[3.7kW]. Finally, it is shown that the inverter can successfully operate in regeneration mode.

  • PDF