• Title/Summary/Keyword: Inverted learning

Search Result 68, Processing Time 0.02 seconds

A Reinforcement Learning with CMAC

  • Kwon, Sung-Gyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.271-276
    • /
    • 2006
  • To implement a generalization of value functions in Adaptive Search Element (ASE)-reinforcement learning, CMAC (Cerebellar Model Articulation Controller) is integrated into ASE controller. ASE-reinforcement learning scheme is briefly studied to discuss how CMAC is integrated into ASE controller. Neighbourhood Sequential Training for CMAC is utilized to establish the look-up table and to produce discrete control outputs. In computer simulation, an ASE controller and a couple of ASE-CMAC neural network are trained to balance the inverted pendulum on a cart. The number of trials until the controllers are established and the learning performance of the controllers are evaluated to find that generalization ability of the CMAC improves the speed of the ASE-reinforcement learning enough to realize the cartpole control system.

Experimental Adaptive Fuzzy Sliding Mode Control of an Inverted Pendulur (도립 진자의 적응 퍼지 슬라이딩 모드 제어기 실험)

  • Kim, Sung-Tae;Park, Hae-Min;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2143-2145
    • /
    • 2002
  • This paper proposes the control problem of an inverted pendulum system based on adaptive fuzzy sliding mode. The universal approximating capability, learning ability, adaptation capability and disturbance rejection are collected in one control strategy. The proposed scheme does not require an accurate dynamic model and the joint acceleration measurement, yet it guarantees asymptotic trajectory tracking. Experimental results perform with an inverted pendulum to show the effectiveness of the approach.

  • PDF

Experimental Studies of Neural Compensation Technique for a Fuzzy Controlled Inverted Pendulum System

  • Lee, Geun-Hyeong;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • This article presents the experimental studies of controlling angle and position of the inverted pendulum system using neural network to compensate for errors caused due to fuzzy controller. Although fuzzy control method can deal with nonlinearities of the system, fixed fuzzy rules may not work and result in tracking errors in some cases. First, a nominal Takagi-Sugeno (TS) type fuzzy controller with fixed weights is used for controlling the inverted pendulum system. Then the neural network is added at the reference input to form the reference compensation technique (RCT)control structure. Neural network modifies the input trajectories to improve system performances by updating internal weights in on-line fashion. The back-propagation learning algorithm for neural network is derived and used to update weights. Control hardware of a DSP 6713 board to have real time control is implemented. Experimental results of controlling inverted pendulum system are conducted and performances are compared.

Asymptotic Output Tracking of Non-minimum Phase Nonlinear Systems through Learning Based Inversion (학습제어를 이용한 비최소 위상 비선형 시스템의 점근적 추종)

  • Kim, Nam Guk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.32-42
    • /
    • 2022
  • Asymptotic tracking of a non-minimum phase nonlinear system has been a popular topic in control theory and application. In this paper, we propose a new control scheme to achieve asymptotic output tracking in anon-minimum phase nonlinear system for periodic trajectories through an iterative learning control with the stable inversion. The proposed design method is robust to parameter uncertainties and periodic external disturbances since it is based on iterative learning. The performance of the proposed algorithm was demonstrated through the simulation results using a typical non-minimum nonlinear system of an inverted pendulum on a cart.

MULTIDIMENSIONAL TEACHING: THOUGHTFUL WAYS OF CREATING A FLIPPED CLASSROOM

  • Cho, Hoyun;Osborne, Carolyn;Sanders, Tobie;Park, KyungEun
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.93-114
    • /
    • 2015
  • The "flipped" or "inverted" classroom, in which students study lecture-type material at home and do their "homework" in the classroom, has been the subject of research, particularly in the area of student achievement. Yet Bishop and Verleger (2013) state the need for an underlying theory to the practice. The purpose of this paper is to explore "multidimensional teaching," the authors' extension of the two-dimensional "flipped" classroom concept in light of Cambourne's (1995) Conditions for Learning. One author's math class for pre-service teachers was taught in two styles, a more traditional lecture format and in the \inverted" format. Students in the "flipped" format achieved at a higher level. Moreover, students' open-ended comments reveal that Cambourne's Conditions for Learning were implicit to the teaching practice. The authors suggest that practitioners of this style of teaching should deliberately develop student-centered practices, such as those mentioned by Cambourne, in order to retain the power that this teaching style currently has.

A Study on the Neuro-Fuzzy Control for an Inverted Pendulum System (도립진자 시스템의 뉴로-퍼지 제어에 관한 연구)

  • 소명옥;류길수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.11-19
    • /
    • 1996
  • Recently, fuzzy and neural network techniques have been successfully applied to control of complex and ill-defined system in a wide variety of areas, such as robot, water purification, automatic train operation system and automatic container crane operation system, etc. In this paper, we present a neuro-fuzzy controller which unifies both fuzzy logic and multi-layered feedforward neural networks. Fuzzy logic provides a means for converting linguistic control knowledge into control actions. On the other hand, feedforward neural networks provide salient features, such as learning and parallelism. In the proposed neuro-fuzzy controller, the parameters of membership functions in the antecedent part of fuzzy inference rules are identified by using the error backpropagation algorithm as a learning rule, while the coefficients of the linear combination of input variables in the consequent part are determined by using the least square estimation method. Finally, the effectiveness of the proposed controller is verified through computer simulation of an inverted pendulum system.

  • PDF

CMAC Learning Controller Implementation With Multiple Sampling Rate: An Inverted Pendulum Example (다중 샘플링 타임을 갖는 CMAC 학습 제어기 실현: 역진자 제어)

  • Lee, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.279-285
    • /
    • 2007
  • The objective of the research is two fold. The first is to design and propose a stable and robust learning control algorithm. The controller is CMAC Learning Controller which consists of a model-based controller, such as LQR or PID, as a reference control and a CMAC. The second objective is to implement a reference control and CMAC at two different sampling rates. Generally, a conventional controller is designed based on a mathematical plant model. However, increasing complexity of the plant and accuracy requirement on mathematical models nearly prohibits the application of the conventional controller design approach. To avoid inherent complexity and unavoidable uncertainty in modeling, biology mimetic methods have been developed. One of such attempts is Cerebellar Model Articulation Computer(CMAC) developed by Albus. CMAC has two main disadvantages. The first disadvantage of CMAC is increasing memory requirement with increasing number of input variables and with increasing accuracy demand. The memory needs can be solved with cheap memories due to recent development of new memory technology. The second disadvantage is a demand for processing powers which could be an obstacle especially when CMAC should be implemented in real-time. To overcome the disadvantages of CMAC, we propose CMAC learning controller with multiple sampling rates. With this approach a conventional controller which is a reference to CMAC at high enough sampling rate but CMAC runs at the processor's unoccupied time. To show efficiency of the proposed method, an inverted pendulum controller is designed and implemented. We also demonstrate it's possibility as an industrial control solution and robustness against a modeling uncertainty.

Realization of a fuzzy-neural controller for the inverted pendulum (퍼지-뉴럴 제어를 적용한 도립진자 제어기의 실현)

  • 강민구;문석우;허욱열;이종호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.878-883
    • /
    • 1991
  • In this paper, we propose the fuzzy-neural controller which is fuzzy controller with learning ability of neural network. The neural network in this controller is same as the membership function in current fuzzy controller and a parts of inference rules. And, it can be easily extend the control algorithm to multivariable systems. We can show effectiveness of the control algorithm through experiment of the inverted pendulum system.

  • PDF

A study on the stabilization control of an inverted pendulum system using CMAC-based decoder (CMAC 디코더를 이용한 도립 진자 시스템의 안정화 제어에 관한 연구)

  • 박현규;이현도;한창훈;안기형;최부귀
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.9A
    • /
    • pp.2211-2220
    • /
    • 1998
  • This paper presetns an adaptive critic self-learning control system with cerebellar model articulation controller (CMAC)-based decoder integrated with the associative search element (ASE) and adatpive critic element(ACE)- based scheme. The tast of the system is to balance a pole that is hinged to a movable cart by applying forces to the cart's base. The problem is that error feedback information is limited. This problem can be sloved when some adaptive control devices are involved. The ASE incorporates prediction information for reinforrcement from a critic to produce evaluative information for the plant. The CMAC-based decoder interprets one state to a set of patways into the ASE/ACE. These signals correspond to te current state and its possible preceding action states. The CMAC's information interpolation improves the learning speed. And design inverted pendulum hardware system to show control capability with neural network.

  • PDF

Control of an Inverted Pendulum Using Neural Network Predictor (신경망 예측기를 이용한 인버티드 펜듈럼의 제어)

  • Moon, Hyeong-Sug;Lee, Kyu-Yul;Kang, Young-Ho;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1031-1033
    • /
    • 1996
  • Now is an automation age. Therefore it is required that machine can do work which was done by men. Artificial Neural Network was developed by the necessity of this purpose. This paper shows a Predictive Control with a Neural Network. The Neural Network learns an Inverted Pendulum in various situations. Then, it has a power to predict the next state after accept the current state. And the Neural Network directs the Bang-Bang Controller to give input to a plant. It seems like that a human expert looks the state of a plant and then controls the plant. It is used a Feedforward Neural Network and shown control state according to the learning. We could get a satisfactory results after complete learning.

  • PDF