• Title/Summary/Keyword: Inverted Top Emission

Search Result 11, Processing Time 0.039 seconds

Development of Plasma Damage Free Sputtering Process for ITO Anode Formation Inverted Structure OLED

  • Lee, You-Jong;Jang, Jin-N.;Yang, Ie-Hong;Kim, Joo-Hyung;Kwon, Soon-Nam;Hong, Mun-Pyo;Kim, Dae-C.;Oh, Koung-S.;Yoo, Suk-Jae;Lee, Bon-J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1323-1324
    • /
    • 2008
  • We developed the Hyper-thermal Neutral Beam (HNB) sputtering process as a plasma damage free process for ITO top anode deposition on inverted Top emission OLED (ITOLED). For examining the effect of the HNB sputtering system, Inverted Bottom emission OLEDs (IBOLED) with ITO top anode electrode were fabricated; the characteristics of IBOLED using HNB sputtering process shows significant suppression of plasma induced damage.

  • PDF

Effects of indium tin oxide top electrode formation conditions on the characteristics of the top emission inverted organic light emitting diodes

  • Kho, Sam-Il;Cho, Dae-Yong;Jung, Dong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.714-716
    • /
    • 2002
  • Indium tin oxide (ITO) was used as the top anode of top emission inverted organic light emitting diodes (TEIOLEDs). TEIOLEDs were fabricated by deposition of an aluminum bottom cathode, an N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1, 1'-diphenyl-4, 4 1'-diamine (TPD) hole transport layer, a tris-8-hydroxyquinoline aluminum ($Alq_3$) emission layer, and an ITO top anode sequentially. ITO was deposited by r.f. magnetron sputtering without $O_2$ flow during the deposition. After the deposition, the deposited ITO layer was kept under oxygen atmosphere for the oxidation. The characteristics of the TEOILED were affected significantly by the post-deposition oxidation condition.

  • PDF

Study of Plasma Process Induced Damages on Metal Oxides as Buffer Layer for Inverted Top Emission Organic Light Emitting Diodes

  • Kim, Joo-Hyung;Lee, You-Jong;Jang, Jin-Nyoung;Song, Byoung-Chul;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.543-544
    • /
    • 2008
  • In the fabrication of inverted top emission organic light emitting diodes (ITOLEDs), the organic layers are damaged by high-energy plasma sputtering process for transparent top anode. In this study, the plasma process induced damages on metal oxide hole injection layers (HILs) including $WO_3$, $MoO_3$, and $V_2O_5$ as buffer layer are examined. With the result of IV characteristic of hole-only devices, we propose that $MoO_3$ and $V_2O_5$ are stable materials against plasma sputtering process.

  • PDF

Highly efficient, long living white PIN-OLEDs for AM displays

  • Murano, Sven;Vehse, Martin;He, Gufeng;Birnstock, Jan;Hofmann, Michael
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.239-244
    • /
    • 2007
  • Highly efficient and stable white PIN OLED structures have been developed with a focus on possible AM display applications. Due to the use of the novel air-stable Novaled n-dopant material NDN26, the mass production compatibility of the PIN approach is improved. With both a conventional n-dopant, NDN1, and a novel air-stable n-dopant, NDN26, similar performance in efficiency and lifetime are reached. Based on highly a stable red fluorescent emitter system, the Novaled PIN approach allows for reaching ultra-long lifetimes of 1,000,000 hours at a brightness of $1,000\;cd/m^2$, both for top and for bottom emission layouts. Furthermore, inverted PIN structures for a possible use in a-Si backplane applications for AM displays are shown. With a phosphorescent green emitter system it could be demonstrated that for bottom and inverted as well as non-inverted top emission, a brightness of $1,000\;cd/m^2$ can be reached at below 3 V. In addition to low operating voltages and long lifetimes, PIN OLEDs also enable for device structures with extremely low operating voltage drifts, a feature of increasing importance for future AM display developments.

  • PDF

Top emission inverted organic light emitting diodes with $N_{2}$ plasma treated Al bottom cathodes

  • Kho, Sam-Il;Shon, Sun-Young;Kwack, Jin-Ho;Jung, Dong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.889-892
    • /
    • 2003
  • Effects of $N_{2}$ plasma treatment of the Al bottom cathode on the characteristics of top emission inverted organic light emitting diodes (TEIOLEDs) were studied. TEIOLEDs were fabricated by depositing an Al bottom cathode, a tris-(8-hydroxyquinoline) aluminum $(Alq_{3})$ emitting layer, an N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'diamine (TPD) hole transport layer, and an indium tin oxide (ITO) top anode sequentially. The Al bottom cathode layer was subjected to $N_{2}$ plasma treatment before deposition of the $Alq_{3}$ layer. X-ray photoelectron spectroscopy suggested that the existence of and the amount of $AIN_x$ between the $Alq_{3}$ emitting layer and the Al bottom cathode significantly affect the characteristics of TEIOLEDs. The maximum external quantum efficiency of the TEIOLED with an Ai bottom cathode subjected to $N_{2}$ plasma treatment for 30 s was about twice as high as that of the TEIOLED with an untreated Al bottom cathode.

  • PDF

Inverted OLED Structure for 3.5 inch Full Color AMOLED Display on a-Si TFT Backplane

  • Park, Jae-Hee;Park, Jae-Young;Hwang, Kwang-Jo;Choi, Hee-Dong;Myoung, Nho-Hoon;Lee, Seok-Jong;Park, Seung-Chul;Kim, Jung-Bum;Hahm, Yun-Hye;Noh, Jeoung-Kwen;Lee, Jung-Hyoung;Kim, Jong-Seok;Kang, Min-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.51-54
    • /
    • 2007
  • Top-emission 3.5 inch qVGA IOD (Inverted AMOLED) was fabricated with inverted EL structure driven by a-Si TFT backplane. In order to get stable driving TFT, we used FCP(Field Control Plate) layer which was connected with the source of the driving TFT. And we developed planarization process to planarize the cathode layer which was the bottom layer of inverted OLED. Our unique IOD structure is “a-Si TFT/ Al(Cathode)/ LiF/ LG-201(ETL)/ EML(RGB)/ HTL/ LG-101(HIL & Buffer layer)/ IZO(Anode)”. LG-201(ETL) layer was studied for more efficient electron injection from cathode to EML, and LG-101(HIL & Buffer layer) covered by IZO anode was also explored for decreasing the EL surface damage.

  • PDF

Tungsten oxide interlayer for hole injection in inverted organic light-emitting devices

  • Kim, Yun-Hak;Park, Sun-Mi;Gwon, Sun-Nam;Kim, Jeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.380-380
    • /
    • 2010
  • Currently, organic light-emitting diodes (OLEDs) have been proven of their readiness for commercialization in terms of lifetime and efficiency. In accordance with emerging new technologies, enhancement of light efficiency and extension of application fields are required. Particularly inverted structures, in which electron injection occurs at bottom and hole injection on top, show crucial advantages due to their easy integration with Si-based driving circuits for active matrix OLED as well as large open area for brighter illumination. In order to get better performance and process reliability, usually a proper buffer layer for carrier injection is needed. In inverted top emission OLED, the buffer layer should protect underlying organic materials against destructive particles during the electrode deposition, in addition to increasing their efficiency by reducing carrier injection barrier. For hole injection layers, there are several requirements for the buffer layer, such as high transparency, high work function, and reasonable electrical conductivity. As a buffer material, a few kinds of transition metal oxides for inverted OLED applications have been successfully utilized aiming at efficient hole injection properties. Among them, we chose 2 nm of $WO_3$ between NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] and Au (or Al) films. The interfacial energy-level alignment and chemical reaction as a function of film coverage have been measured by using in-situ ultraviolet and X-ray photoelectron spectroscopy. It turned out that the $WO_3$ interlayer substantially reduces the hole injection barrier irrespective of the kind of electrode metals. It also avoids direct chemical interaction between NPB and metal atoms. This observation clearly validates the use of $WO_3$ interlayer as hole injection for inverted OLED applications.

  • PDF

Insertion of an Organic Hole Injection Layer for Inverted Organic Light-Emitting Devices

  • Park, Sun-Mi;Kim, Yun-Hak;Lee, Yeon-Jin;Kim, Jeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.379-379
    • /
    • 2010
  • Recent technical advances in OLEDs (organic light emitting devices) requires more and more the improvement in low operation voltage, long lifetime, and high luminance efficiency. Inverted top emission OLEDs (ITOLED) appeared to overcome these problems. This evolved to operate better luminance efficiency from conventional OLEDs. First, it has large open area so to be brighter than conventional OLEDs. Also easy integration is possible with Si-based driving circuits for active matrix OLED. But, a proper buffer layer for carrier injection is needed in order to get a good performance. The buffer layer protects underlying organic materials against destructive particles during the electrode deposition and improves their charge transport efficiency by reducing the charge injection barrier. Hexaazatriphenylene-hexacarbonitrile (HAT-CN), a discoid organic molecule, has been used successfully in tandem OLEDs due to its high workfunction more than 6.1 eV. And it has the lowest unoccupied molecular orbital (LUMO) level near to Fermi level. So it plays like a strong electron acceptor. In this experiment, we measured energy level alignment and hole current density on inverted OLED structures for hole injection. The normal film structure of Al/NPB/ITO showed bad characteristics while the HAT-CN insertion between Al and NPB greatly improved hole current density. The behavior can be explained by charge generation at the HAT-CN/NPB interface and gap state formation at Al/HAT-CN interface, respectively. This result indicates that a proper organic buffer layer can be successfully utilized to enhance hole injection efficiency even with low work function Al anode.

  • PDF