• Title/Summary/Keyword: Inverted Mobile robot system

Search Result 17, Processing Time 0.021 seconds

Fuzzy Logic Application to a Two-wheel Mobile Robot for Balancing Control Performance

  • Kim, Hyun-Wook;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.154-161
    • /
    • 2012
  • This article presents experimental studies of fuzzy logic application to control a two-wheel mobile robot(TWMR) system. The TWMR system is composed of two systems, an inverted pendulum system and a mobile robot system. Although linear controllers can stabilize the TWMR, fuzzy controllers are expected to have robustness to uncertainties so that the resulting performances are expected to be better. Nominal fuzzy rules are used to control balance and position of TWMR. Fuzzy logic is embedded on a DSP chip to control the TWMR. Balancing performances of the PID controller and the fuzzy controller under disturbances are compared through extensive experimental studies.

Experimental Studies of Balancing an Inverted Pendulum and Position Control of a Wheeled Drive Mobile Robot Using a Neural Network (신경회로망을 이용한 이동로봇 위의 역진자의 각도 및 로봇 위치제어에 대한 연구)

  • Kim, Sung-Su;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.888-894
    • /
    • 2005
  • In this paper, experimental studies of balancing a pendulum mounted on a wheeled drive mobile robot and its position control are presented. Main PID controllers are compensated by a neural network. Neural network learning algorithm is embedded on a DSP board and neural network controls the angle of the pendulum and the position of the mobile robot along with PID controllers. Uncertainties in system dynamics are compensated by a neural network in on-line fashion. Experimental results show that the performance of balancing of the pendulum and position tracking of the mobile robot is good.

Attitude Control of A Two-wheeled Mobile Manipulator by Using the Location of the Center of Gravity and Sliding Mode Controller (무게중심위치와 슬라이딩 모드 제어를 통한 이륜형 모바일 머니퓰레이터의 자세제어)

  • Kim, Min-Gyu;Woo, Chang-Jun;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.758-765
    • /
    • 2015
  • This paper proposes an attitude control system to keep the balance for a two-wheeled mobile manipulator which consists of a mobile platform and a three D.O.F. manipulator. In the conventional control scheme, complicated dynamics of the manipulator need to be derived for balancing control of a mobile manipulator. The method proposed in this paper, however, three links are considered as one body of mass and the dynamics are derived easily by using an inverted pendulum model. One of the best advantage of a sliding mode controller is low sensitivity to plant parameter variations and disturbances, which eliminates the necessity of exact modeling to control the system. Therefore the sliding mode control algorithm has been adopted in this research for the attitude control of mobile platform along the pitch axis. The center of gravity for the whole mobile manipulator is changing depending on the motion of the manipulator. And the orientation variation of center of gravity is used as reference input for the sliding mode controller of the pitch axis to maintain the center of gravity in the middle of robot to keep the balance for the robot. To confirm the performance of controller, MATLAB Simulink has been used and the resulting algorithms are applied to a real robot to demonstrate the superiority of the proposed attitude control.

Experimental Studies of Balancing Control of a Two-wheel Mobile Robot for Human Interaction by Angle Modification (이륜 구동 로봇의 균형 각도 조절을 통한 사람과의 상호 제어의 실험적 연구)

  • Lee, Seung Jun;Jung, Seul
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2013
  • This paper presents interaction force control between a balancing robot and a human operator. The balancing robot has two wheels to generate movements on the plane. Since the balancing robot is based on position control, the robot tries to maintain a desired angle to be zero when an external force is applied. This leads to the instability of the system. Thus a hybrid force control method is employed to react the external force from the operator to guide the balancing robot to the desired position by a human operator. Therefore, when an operator applies a force to the robot, desired balancing angles should be modified to maintain stable balance. To maintain stable balance under an external force, suitable desired balancing angles are determined along with force magnitudes applied by the operator through experimental studies. Experimental studies confirm the functionality of the proposed method.

Nonlinear Model-Based Disturbance Compensation for a Two-Wheeled Balancing Mobile Robot (이륜 밸런싱 로봇에 대한 비선형 모델 기반 외란보상 기법)

  • Yu, Jaerim;Kim, Yongkuk;Kwon, SangJoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.826-832
    • /
    • 2016
  • A two-wheeled balancing mobile robot (TWBMR) has the characteristics of both nonlinear and underactuated system. In this paper, the disturbances acting on a TWBMR are classified into body disturbance and wheel disturbance. Additionally, we describe a nonlinear disturbance observer, which is suitable as a single input multi-output (SIMO) system for the longitudinal motion of TWBMR. Finally, we propose a reasonable disturbance compensation technique that combines the indirect reference input of equilibrium point and the direct torque compensation input. Simulations and experimental results show that the proposed disturbance compensation method is an effective way to achieve robust postural stability, specifically on inclined terrains.

Fuzzy PD+I Control Method for Two-wheel Balancing Mobile Robot (퍼지 PD+I 제어 방식을 적용한 Two-wheel Balancing Mobile Robot)

  • Eom, Ki-Hwan;Lee, Kyu-Yun;Lee, Hyun-Kwan;Kim, Joo-Woong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • A two-wheel balancing vehicle, which helps people moving freely and fast, and is applied from inverted pendulum system, has been widely researched and developed, and some products are came into a market in actuality. Until now, the two-wheel balancing vehicles developed have chosen the general PID control method. In this paper, we propose a new control method to improve a control capacity for a two-wheeled balancing vehicle for human transportation. The proposed method is the fuzzy PD+I control that is one of the improved PID control, and it contains a 2input-1output fuzzy system. This fuzzy system processes signals from proportional and derivative controller, and the fuzzy output signal generates the final output by summing up integral signal. The non-linearity of the fuzzy system makes an optimal output control signal by changing weight of the proportional signal and the derivative signal in process of time. We have simulated the fuzzy PD+I control system and experimented by implementing the two-wheel balancing mobile robot to verify the advantages of the proposed fuzzy PD+I control method in comparison with general PID control. As the results of simulation and experimentation, the proposed fuzzy PD+I control method has better control performance than general PID in this system and improves it.

A Wheeled Inverted Pendulum System with an Automatic Standing Arm (자동기립이 가능한 차륜형 역진자 시스템 개발)

  • Lee, Se-Han
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.578-584
    • /
    • 2015
  • In this study a moving platform for a mobile robot that can be traveling with a full automatic standing arm was developed. Conventional mobile robots generally may equip 4 wheels or 3 wheels with a caster wheel or independent driven wheels and have good statistic stability. When a mobile robot travels on a sharply perpendicular and narrow crossroad, it may need a special steering scheme such as going forward and backward repeatedly or it is sometimes physically impossible for the robot to go through the crossroad because of the size limit. The upright running mobile robot changes its posture to the upright posture which has a small planar area and is able to go through the crossroad. The upright control which was manually performed step by step before such as sequences of uprighting (returning), checking, and balancing, is now automated.