• Title/Summary/Keyword: Inverted Pendulum Model

Search Result 139, Processing Time 0.029 seconds

Design of $H_{\infty}$Controller for the inverted pendulum system (도립진자 시스템의 $H_{\infty}$ 제어기 설계)

  • Seo, Kang-Myun;Kang, Moon-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1796-1803
    • /
    • 2006
  • This Paper describes a systematic method for designing the $H_{\infty}$ controller for the inverted pendulum which is a nonlinear and single-input double-outputs system. In particular, the open-loop system is conbined with a pre-filter to shape the open-loop transfer function for the sensitivity function ind the complementary sensitivity function to be kept the desirable frequency characteristics. Consequently, the loop shaping technique of the open-loop transfer function reduces the impacts of the model uncertainties, measurement noises and exogenous disterbances on the dynamic characteristics of the inverted pendulum. The results of simulation and experiment show the efficiency of the proposed control method comparing with conventional PID control method.

Locomotion Control of Biped Robots with Serially-Linked Parallel Legs (이중 병렬형 다리 구조를 가진 2족보행로봇의 보행제어)

  • Yoon, Jung-Han;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.683-693
    • /
    • 2010
  • In this paper, we propose a new parallel mechanism for the legs of biped robots and the control of the robot's locomotion. A leg consists of two 3-DOF parallel platforms linked serially: one is an orientation platform for a thigh and the other is the 3-DOF asymmetric parallel platform for the shank. The desired locomotion trajectory is generated on the basis of the Gravity-Compensated Inverted Pendulum Mode (GCIPM) in the sagittal direction and the Linear Inverted Pendulum Mode (LIPM) in the lateral direction, respectively. In order to simulate the ground reaction force, a 6-DOF elastic pad model is used underneath each of the soles. The performance and effectiveness of the proposed parallel mechanism and locomotion control are shown by the results of computer simulations of a 12-DOF parallel biped robot using $SimMechanics^{(R)}$.

MCU Module Design for Posture Control based on ESP32 (ESP32 기반 자세 제어용 MCU 모듈 설계)

  • Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.289-290
    • /
    • 2021
  • Recently, with the advent of the 4th industrial revolution, the role of robots is increasing, and the use of robots is also increasing in the service field. The most popular model for nonlinear research related to robots is the inverted pendulum system. A balancing robot using an inverted pendulum system is a representative nonlinear system and is mainly used to study control theory and other kinematic structures. In this paper, the state of the robot is measured using the 3-axis acceleration sensor (ADXL345) and 3-axis digital output gyro sensor (ITG-3200) or HMC5883L required for balancing robot control, and using the ESP32-WROOM-32 module. I want to design an MCU module that can control a balancing robot. In addition, by using the ESP32-WROOM-32 MCU module, we intend to design an MCU module that can monitor the state of the balancing robot based on WiFi or Bluetooth.

  • PDF

A study on a structure of a model reference adaptive fuzzy controller(MRAFC) (모델 레퍼런스 적응 퍼지 제어기 구조에 관한 연구)

  • Lee, Gi-Bum;Choi, Jong-Soo;Joo, Moon-Gab
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.512-514
    • /
    • 1998
  • The paper presents a model reference adaptive control containing a fuzzy algorithm for tuning the gain coefficient which adjusts the level of the fuzzy controller output. The synthesis of a fuzzy tuning algorithm has been performed for the inverted pendulum system. The computer simulation results have proved the efficiency of the proposed method, showing stable system responses.

  • PDF

A study on sliding surface design

  • Zhang, Yifan.;Lee, Sanghyuk
    • Journal of Convergence Society for SMB
    • /
    • v.4 no.2
    • /
    • pp.25-31
    • /
    • 2014
  • Sliding mode design and analysis for nonlinear system was carried out. A designer will determine the parameters to know about the performance and robustness of the system dynamics. To investigate the characteristics of sliding mode control, an inverted pendulum model is applied by the sliding mode control and the state concerned is output. Comparison is made by evaluating different initial conditions, sliding numerical components for sliding surface, and input gain, the dynamic of output will be investigated to conclude the generality. Control approaches have their limitations and sliding mode control is no exception. The chattering problem is its main negative effect to overcome. This effect is displayed and in this project chattering problem is suppressed by a modified discontinuous controller.

  • PDF

H$\infty$ Fuzzy Dynamic Output Feedback Controller Design with Pole Placement Constraints

  • Kim, Jongcheol;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.176.5-176
    • /
    • 2001
  • This paper presents a fuzzy dynamic output feedback controller design method for Parallel Distributed Compensation (PDC)-type Takagi-Sugeno (T-S) model based fuzzy dynamic system with H$\infty$ performance and additional constraints on the closed pole placement. Design condition for these controller is obtained in terms of the linear matrix inequalities (LMIs). The proposed fuzzy controller satisfies the disturbance rejection performance and the desired transient response. The design method is verified by this method for an inverted pendulum with a cart using the proposed method.

  • PDF

An Experimental Application of Observer/controller Identification Algorithm to the System Identification of Inherently Unstable Systems

  • Park, Mun-Soo;Yang, Dong-Hoon;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.63.4-63
    • /
    • 2002
  • $\textbullet$ Closed System Identification for inherently unstable systems $\textbullet$ Application of Observer/controller Identification (OCID) algorithm to those systems $\textbullet$ An open-loop system model with corresponding controller and observer gains are identified using OCID $\textbullet$ Experimental example of the OCID algorithm for an inverted pendulum system operating in closed-loop $\textbullet$ Modal analysis and time response to the added distrubance are presented to evaluate the performance of the OCID algorithm.

  • PDF

Stability Analysis of a Biped Walking Robot with Foot Rotation Indicator

  • Noh, Kyung-Kon;Lee, Bo-Hee;Kim, Jin-Geol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.105.2-105
    • /
    • 2002
  • $\textbullet$ Statically stable walk with COG(center of gravity) $\textbullet$ Dynamically stable walk with ZMP(zero moment point) $\textbullet$ Dynamically adaptational stable walk with FRI(foot ratation indicator) $\textbullet$ Simplified inverted pendulum model approach $\textbullet$ Analysis posture of biped's foot as passive joint $\textbullet$ Stability compensation method of FRI against falling down $\textbullet$ Simulation of ZMP and FRI to real biped robot IWR-III

  • PDF

Controller synthesis procedure for the TS fuzzy systems with affine local model: A study focusing on the inverted pendulum control problem (애파인 국소모델을 갖는 TS퍼지 시스템을 위한 제어기 설계방안: 도립진자 문제를 중심으로 한 고찰)

  • 곽기호;박주영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.55-58
    • /
    • 2000
  • 본 논문은 애파인 국소모델을 갖는 TS 퍼지 모델로 표현된 비선형 시스템의 제어에 관하여 다룬다. 여기서 사용하는 TS 퍼지 모델은 실제 모델의 비선형 미분 방정식의 근사로부터 유도된다. 그리고 이 모델을 바탕으로 비례 입력행렬을 가지는 시스템에 대해 안정화시킬 수 있는 TS 퍼지 제어기를 구한다. 본 논문의 설계 과정은 도립진자 제어를 통해 검증한다.

  • PDF

Fuzzy Sliding Mode Observer for Nonlinear System

  • Seo, Sam-Jun;Kim, Dong-Sik;Seo, Ho-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.42.2-42
    • /
    • 2001
  • This paper deals with a fuzzy sliding mode observer for nonlinear systems. A nonlinear system is approximated by a multiple model Takagi Sugeno fuzzy system and then transformed into a canonical form for which a nonlinear observer is constructed. This study presents a type of fuzzy sliding mode observer that deals with matched and unmatched uncertainties in the plant dynamics very effectively. The proposed method was validated by the example of a inverted pendulum.

  • PDF