• 제목/요약/키워드: Inverted Pendulum Model

검색결과 139건 처리시간 0.024초

Inverted Pendulum 제어를 위한 새로운 하이브리드 퍼지게인스케쥴링 제어기의 설계

  • 정병태;박재삼
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 1997년도 춘계학술대회 발표논문집
    • /
    • pp.235-246
    • /
    • 1997
  • Hybrid fuzzy gain scheduling controller is composed of a PD control and a fuzzy control for taking the advantage of each scheme. The key structure of the hybrid fuzzy gain scheduling control scheme is so called a switch which calculates weighting values between the fuzzy controller and the PD controller. However, due to the requirement of the switch , the hybrid fuzzy gain scheduling control scheme needs extra fuzzy logic processing, thus the structure is complicated. and requires more calculation time. To eliminate the drawbacks, a new hybrid fuzzy gain scheduling control scheme is proposed in this paper. In the proposed scheme, the membership function, for calculating of weithting value, and the input and output membership functions are combined. Thus the proposed hybrid scheme does not require switch for calculation of weighting value, and as a result, the calculation time is faster and the structure is more simple than the existing hybrid controller. Computer simulation results for an inverted pendulum model under Pole-Placement PID controller, fuzzy gain scheduling controller,existing hybrid controller , and proposed hybrid controller are compared to demonstrate the good property of the proposed hybrid controller.

Indirect Adaptive Fuzzy Observer Design

  • Yang, Jong-Kun;Hyun, Chang-Ho;Kim, Jae-Hun;Kim, Eun-Tai;Park, Mi-Gnon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.192-196
    • /
    • 2004
  • This paper proposes an alternative observation scheme, T-S fuzzy model based indirect adaptive fuzzy observer. Nonlinear systems are represented by fuzzy models since fuzzy logic systems are universal approximators. In order to estimate the unmeasurable states of a given nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The adaptive fuzzy scheme estimates the parameters comprising the fuzzy model representing the observation system. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observation method, it is applied to an inverted pendulum on a cart.

  • PDF

Indirect Adaptive Fuzzy Observer Design

  • Yang, Jong-Kun;Hyun, Chang-Ho;Kim, Jae-Hun;Kim, Eun-Tai;Park, Mignon
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.927-933
    • /
    • 2004
  • This paper proposes an alternative observation scheme, T-S fuzzy model based indirect adaptive fuzzy observer. Nonlinear systems are represented by fuzzy models since fuzzy logic systems are universal approximators. In order to estimate the unmeasurable states of a given nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The adaptive fuzzy scheme estimates the parameters comprising the fuzzy model representing the observation system. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observation method, it is applied to an inverted pendulum on a cart.

퍼지모델을 이용한 비선형시스템의 센서고장 검출식별 (A Fuzzy Model Based Sensor Fault Detection Scheme for Nonlinear Dynamic Systems)

  • 이기상
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.407-414
    • /
    • 2007
  • A sensor fault detection scheme(SFDS) for a class of nonlinear systems that can be represented by Takagi-Sugeno fuzzy model is proposed. Basically, the SFDS may be considered as a multiple observer scheme(MOS) in which the bank of state observers and the detection & isolation logic are included. However, the proposed scheme has two great differences from the conventional MOSs. First, the proposed scheme includes fuzzy fault detection observers(FFDO) that are constructed based on the T-S fuzzy model that provides very good approximation to nonlinear dynamic systems. Secondly, unlike the conventional MOS, the FFDOS are driven not parallelly but sequentially according to the predetermined sequence to avoid the massive computational burden, which is known to be the biggest obstacle to the practical application of the multiple observer based FDI schemes. During the operating time, each FFDO generates the residuals carrying the information of a specified fault, and the corresponding fault detection logic unit performs the logical operations to detect and isolate the fault of interest. The proposed scheme is applied to an inverted pendulum control system for sensor fault detection/isolation. Simulation study shows the practical feasibility of the proposed scheme.

Control Strategy for Modifiable Bipedal Walking on Unknown Uneven Terrain

  • Lee, Woong-Ki;Chwa, Dongkyoung;Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1787-1792
    • /
    • 2016
  • Previous walking pattern generation methods could generate walking patterns that allow only straight walking on flat and uneven terrain. They were unable to generate modifiable walking patterns whereby the sagittal and lateral step lengths and walking direction can be changed at every footstep. This paper proposes a novel walking pattern generation method to realize modifiable walking of humanoid robots on unknown uneven terrain. The proposed method employs a walking pattern generator based on the 3-D linear inverted pendulum model (LIPM), which enables a humanoid robot to vary its walking patterns at every footstep. A control strategy for walking on unknown uneven terrain is proposed. Virtual spring-damper (VSD) models are used to compensate for the disturbances that occur between the robot and the terrain when the robot walks on uneven terrain with unknown height. In addition, methods for generating the foot and vertical center of mass (COM) of the 3-D LIPM trajectories are developed to realize stable walking on unknown uneven terrain. The proposed method is implemented on a small-sized humanoid robot platform, DARwIn-OP and its effectiveness is demonstrated experimentally.

Design of Simple-Structured Fuzzy Logic Systems for Segway-Type Mobile Robot

  • Yoo, Hyun-Ho;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권4호
    • /
    • pp.232-239
    • /
    • 2015
  • Studies on the control of the inverted pendulum type system have been widely reported. This is because it is a typical complex nonlinear system and may be a good model for verifying the performance of a proposed control system. In this paper, we propose the design of some fuzzy logic control (FLC) systems for controlling a Segway-type mobile robot, which is an inverted pendulum type system. We first derive a dynamic model of the Segway-type mobile robot and then analyze it in detail. Next, we propose the design of some FLC systems that have good performance for the control of any nonlinear system. Then, we design two conventional FLC systems for the position and balance control of the Segway-type mobile robot, and we demonstrate their usefulness through simulations. Next, we point out the possibility of simplifying the design process and reducing the computational complexity,, which results from the skew symmetric property of the fuzzy control rule tables. Finally, we design two other FLC systems for position and balance control of the Segway-type mobile robot. These systems have only one input variable in the FLC systems. Furthermore, we observe that they offer similar control performance to that of the conventional two-input FLC systems.

$H_{\infty}$ 최적제어 이론을 이용한 도립진자의 견실한 보상기 설계에 관한 연구 (A Study on the Robust Compensator of An Inverted Pendulum Using $H_{\infty}$ Optimal Control Theory)

  • 김대현;정규홍;이석재;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.213-218
    • /
    • 1991
  • A new model which contains the dynamics of the motor system and the kinematics of the timing belt system is derived for an inverted pendulum system in FAPA Lab. Generalized standard compensator configuration(SCC) which contains the variable design parameters Kl, K2, .., K5 is proposed so that any desired design specification can be achieved. The robust controller which has robust property against the influence of sensor noise, system parameter variation and model uncertainty is designed minimizing the H$_{\infty}$-norm of transfer function from exogenous input to controlled output. The method of solving the two Riccati equations in state space and determining the controller uses on iteration method where the unique stabilizing solution to two algebraic Riccati equation must be positive definite and the spectral radius of their product less than .gamma.$^{2}$. Some cases are derived by varying the design parameter for simulation on a digital computer and experimenting the H$_{\infty}$- controller on an analog computer. The design parameters of controller which satisfies the desired control specification is selected on the basis of the simulation result and experimenting. The reasonableness and validity of the simulation and the robustness of the controller is established.d.

  • PDF

칼만예측기의 ZMP 상태추정을 통한 이족로봇의 균형제어기법 (Balance Control of a Biped Robot Using the ZMP State Prediction of the Kalman Estimator)

  • 박상범;한영준
    • 한국지능시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.601-607
    • /
    • 2006
  • 본 논문은 칼만필터를 이용한 ZMP의 다음 상태 예측을 통한 새로운 이족로봇의 균형제어기법을 제안한다. 일반적으로 이족로봇의 동역학 모델은 3D-LIPM(3D-Linear Inverted Pendulum Mode)에 의해 수학적으로 근사화되지만, 이는 로봇의 동역학적 특성을 완벽하게 표현할 수 없다. 이족로봇의 안정성은 ZMP(Zero Moment Point) 위치가 안정영역에 존재하는 경우에 안정성이 보장된다. 그리고 로봇 구조와 그 모델 사이의 내재된 오차는 로봇의 안정성에 영향을 끼칠 수 있다. 그러므로 본 논문에서 제안하는 균형제어기법은 내부 오차를 줄일 수 있으며, 적절한 로봇의 제어가 가능하다. 제안된 균형제어기법의 실험은 다양한 상황을 포함한 가상의 공간상에서 모의실험 되었다.