• Title/Summary/Keyword: Inverse curvature flows

Search Result 1, Processing Time 0.018 seconds

A CLASS OF INVERSE CURVATURE FLOWS IN ℝn+1, II

  • Hu, Jin-Hua;Mao, Jing;Tu, Qiang;Wu, Di
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1299-1322
    • /
    • 2020
  • We consider closed, star-shaped, admissible hypersurfaces in ℝn+1 expanding along the flow Ẋ = |X|α-1 F, α ≤ 1, β > 0, and prove that for the case α ≤ 1, β > 0, α + β ≤ 2, this evolution exists for all the time and the evolving hypersurfaces converge smoothly to a round sphere after rescaling. Besides, for the case α ≤ 1, α + β > 2, if furthermore the initial closed hypersurface is strictly convex, then the strict convexity is preserved during the evolution process and the flow blows up at finite time.