This paper proposes an Extended and Adaptive Inverse Perspective Mapping (EA-IPM) model that can obtain an accurate bird's-eye view (BEV) from the forward-looking monocular camera on the sidewalk with various curves. While Inverse Perspective Mapping (IPM) is a good way to obtain ground information, conventional methods assume a fixed relationship between the camera and the ground. Due to the nature of the driving environment of the mobile robot, there are more walking environments with frequent motion changes than flat roads, which have a fatal effect on IPM results. Therefore, we have developed an extended IPM process to be applicable in IPM on sidewalks by adding a formula for complementary Y-derive processes and roll motions to the existing adaptive IPM model that is robust to pitch motions. To convince the performance of the proposed method, we evaluated our results on both synthetic and real road and sidewalk datasets.
본 논문은 차량에 설치된 블랙박스 영상으로부터 도로노면에 표시된 방향지시기호를 효율적으로 검출하는 방안을 제안한다. 제안한 연구에서는 원근 효과를 가진 입력영상에서 역원근변환 방법을 통해 원근 효과를 제거한 실세계 좌표로 매핑 한 평면 영상에서 BOF 특징정보 기반의 신경망 인식기를 통해 검출한다. 입력영상에서 역원근변환과 특징정보의 검출 및 인식은 높은 계산량 때문에 실시간 처리가 어려운 점이 있다. 이를 보완하기 위해 제안한 방안에서는 입력영역의 도로노면 방향지시기호 영역의 특징을 분석하여 도로노면 기호가 포함된 후보 ROI영역을 정의하고 후보 ROI영역의 Gray 색상에서 역원근변환을 수행한다. 그리고 각 도로기호 영역들을 실시간 검출 및 인식하기 위해 인식코자 하는 영역 극소 특징벡터를 추출하고 이를 근소화시킨 클래스로 군집화하여 BOF를 생성한 후 이를 활용한 신경망을 통해 검출한다. 제안한 방안을 도로노면 방향지시기호 검출 연구에 적용한 결과, 약 89% 이상 비교적 정확한 검출률을 제시하였으며, 다양한 도로 환경에서도 높은 검출률을 제시하였다. 따라서 제안한 방안을 안전운전지원시스템을 위한 보다 정확한 도로정보 제공시스템에 적용 가능함을 보인다.
자율 주행에서 도로 표시는 객체 추적, 경로 계획을 위한 필수 요소이며 측위를 위한 중요한 정보를 제공할 수 있다. 이 논문은 역 관점 매핑 이미지와 정밀도로지도 투영 이미지를 매칭하여 비교함으로써 도로 노면 표지의 갱신 및 위치 측위를 하는 접근 방식을 제시한다. 역 관점 매핑(IPM; Inverse Perspective Mapping) 기법을 사용하여 차량의 전방을 촬영한 카메라 이미지에서 원근 효과를 제거하고 2D 도메인으로 버드뷰 이미지를 생성한다. 그 다음에 GNSS/INS를 참조하여 촬영된 이미지와 동일한 정밀도로지도 영역을 이미지로 생성하여 두 이미지의 노면표지가 최대한 일치하도록 피팅 한다. 또한 정지선, 횡단 보도, 점선 및 직선 등 문자와 화살표를 인식하여 정밀도로지도의 객체와 비교 함으로써 갱신 여부를 판단 한다. 그리고 새로 설치된 객체의 측위는 주변의 객체의 위치 좌표값을 정밀도로지도에서 참조하여 얻을 수 있다. 우리는 매우 낮은 계산 비용과 저가의 카메라 및 GNSS/INS 센서 만으로도 빠르게 갱신된 정밀도로지도를 얻을 수 있다.
Lane keeping assist and departure prevention system are the key functions of ADAS. In this paper, we propose lane detection method which uses Gaussian function based RANSAC. The proposed method consists mainly of IPM (inverse perspective mapping), Canny edge detector, and Gaussian function based RANSAC (Random Sample Consensus). The RANSAC uses Gaussian function to extract the parameters of straight or curved lane. The proposed RANSAC is different from the conventional one, in the following two aspects. One is the selection of sample with different probability depending on the distance between sample and camera. Another is the inlier sample score that assigns higher weights to samples near to camera. Through simulations, we show that the proposed method can achieve good performance in various of environments.
본 논문에서는 교통관제용 CCTV로부터 촬영된 영상에서 교통 상황 분석을 위해 차량의 통행량 및 통행 속도를 획득하는 방법을 제안한다. 제안하는 방법은 촬영된 영상에 역 투영 사상(IPM, Inverse Perspective Mapping) 방법을 이용하여 카메라 각도에 따른 시각적 관점에서 기인한 왜곡을 제거하고, 차선 검출 알고리즘을 통해 1) 차량 통행량, 2) 차량 통행 속도를 측정할 소정 영역을 획득한다. 소정 영역에 대하여 광류(Optical flow) 기반 모션 추정을 이용하여 차량 통행량 및 통행 속도를 획득한다. 본 논문에서 제안한 방법을 지역별 다양한 CCTV 영상인 총 106,993 프레임, 약 세 시간 길이의 영상에 적용하여 88.94%의 검출 성능을 얻을 수 있었다.
본 논문에서는 종방향 충돌경보 및 회피시스템(FCWA ; forward collision warning and avoidance)의 일환으로 가변적인 경사도를 가지는 고속도로상의 차선, 차량, 그리고 도로의 곡률을 효과적으로 검출할 수 있는 알고리듬을 제안하였다. 먼저 2D 영상좌표계에 나타나는 투영효과를 제거하기 위한 역투영(IPM; inverse perspective mapping)기법을 소개하였다. 또한 IPM과 필터로부터 차선과 차량을 효과적으로 검출할 수 있는 알고리듬을 소개하였다. 마지막으로 경사가 있는 실제도로영상에 대한 IMP의 수정된 파라미터 보정에 대한 개념 및 실제도로의 곡률 검출을 위한 기하학적 함수 추정기법을 설명하였다 실험결과 제안한 알고리듬이 실제도로영상에서 차선, 차량, 그리고 곡률의 검출에 효과적임을 확인할 수 있었다.
본 논문은 자율주행자동차가 곡선 주행 차로를 따라 주행 경로를 인지하고 경로 제어가 가능하도록 하기 위한 IPM 기반의 차선 검출기 구조에 대해 제안하고 RTL (Register Transfer Level) 기반의 회로 구현 결과에 대해 설명한다. 제안한 회로 구조는 곡률이 심한 차선에 대해 높은 정확도를 보장하기 위해 역투영 정합 영상을 Near/Far 영역으로 구분하여 허프 변환과 차선의 후보 영역 검출 연산을 적용한다. 자율주행자동차의 경우 다양한 알고리즘을 탑재해야 하므로 임베디드 시스템에서 차선 인식기의 시스템 자원 사용량을 줄이기 위해 차선 인식에 사용하는 영상 데이터 및 각종 파라미터 데이터에 대해 메모리 접근 회수를 최소화하는 방법을 제안하였다. 제안한 회로는 Xilinx Zynq XC7Z020에서 LUT 16%, FF 5.9%, BRAM 29%의 FPGA 자원 점유율을 보였으며 100MHz 클럭에서 Full-HD ($1920{\times}1080$) 영상을 초당 42장 처리 가능한 성능을 갖고 약 96% 차선 인식률을 보인다.
본 논문에서는 차선 이탈 경고 장치 시스템에서 사용될 수 있는 주행차선 추적 방법을 제안한다. 먼저 역투영 변환을 이용해 차량에 부착된 카메라로 입력 받은 영상의 원근 효과가 제거된 조감도 영상을 생성한다. 그다음 차선의 형태학적 사전 지식을 이용하여 차선 검출에 적합한 특징들을 추출한다. 이후 블록 단위의 관심영역에 해당하는 차선 특징을 클러스터링하고 차선 유사도 함수를 이용함으로써 잡음이 제거된 차선 특징들을 얻을 수 있다. 이후 RANSAC(RANdom Sample Consensus) 알고리즘을 사용하여 차선 모델을 계산하고 칼만 필터를 이용하여 검출된 차선 모델을 추적한다. 제안하는 알고리즘은 고속도로 상의 다양한 환경에서 20ms 이내의 처리 속도와 90% 가량의 추적률을 얻을 수 있었다.
Position of the vehicle for driving is essential to autonomous navigation. However, there appears GPS position error due to multipath which is occurred by tall buildings in downtown area. In this paper, GPS position error is corrected by using camera sensor and highly accurate map made with 3D-Lidar. Input image through inverse perspective mapping is converted into top-view image, and it works out map matching with the map which has intensity of 3D-Lidar. Performance comparison was conducted between this method and traditional way which does map matching with input image after conversion of map to pinhole camera image. As a result, longitudinal error declined 49% and complexity declined 90%.
This paper proposes a stereo vision-based forward obstacle detection and distance measurement method. In general, stereo vision-based obstacle detection methods in automotive applications can be classified into two categories: IPM (Inverse Perspective Mapping)-based and disparity histogram-based. The existing disparity histogram-based method was developed for stop-and-go applications. The proposed method extends the scope of the disparity histogram-based method to highway applications by 1) replacing the fixed rectangular ROI (Region Of Interest) with the traveling lane-based ROI, and 2) replacing the peak detection with a constant threshold with peak detection using the threshold-line and peakness evaluation. In order to increase the true positive rate while decreasing the false positive rate, multiple candidate peaks were generated and then verified by the edge feature correlation method. By testing the proposed method with images captured on the highway, it was shown that the proposed method was able to overcome problems in previous implementations while being applied successfully to highway collision warning/avoidance conditions, In addition, comparisons with laser radar showed that vision sensors with a wider FOV (Field Of View) provided faster responses to cutting-in vehicles. Finally, we integrated the proposed method into a longitudinal collision avoidance system. Experimental results showed that activated braking by risk assessment using the state of the ego-vehicle and measuring the distance to upcoming obstacles could successfully prevent collisions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.