• Title/Summary/Keyword: Inverse Kinematics Problem

검색결과 57건 처리시간 0.018초

A solution of inverse kinematics for manipulator by self organizing neural networks

  • Takemori, Fumiaki;Tatsuchi, Yasuhisa;Okuyama, Yoshifumi;Kanabolat, Ahmet
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.65-68
    • /
    • 1995
  • This paper describes trajectory generation of a riobot arm by self-organizing neural networks. These neural networks are based on competitive learning without a teacher and this algorithm which is suitable for problems in which solutions as teaching signal cannot be defined-e.g. inverse dynamics analysis-is adopted to the trajectory generation problem of a robot arm. Utility of unsupervised learning algorithm is confirmed by applying the approximated solution of each joint calculated through learning to an actual robot arm in giving the experiment of tracking for reference trajectory.

  • PDF

MEURAL NETWORK을 이용한 병렬매니플레이터의 순기구학 해석 (Forward Kinematics Analysis of a Parallel Manipulator Using Neural Network)

  • 이제섭;최병오;조택동
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.224-228
    • /
    • 2000
  • In this paper, the kinematics of the new type of parallel manipulator is studied, and neural network is applied to solve the forward kinematics problem. The parallel manipulator, called a Stewart platform, has an easy and unique solution about the inverse kinematics, however the forward kinematics is difficult to get the solution because of the lack of an efficient algorithm due to its highly nonlinearity. This paper proposes the neural network scheme as an alternative Newton-Raphson method. The neural network is found to improve its accuracy by adjusting the offset of the result obtained.

  • PDF

케이싱 오실레이터의 순기구학 해석 (Forward Kinematic Analysis of Casing Oscillator)

  • 남윤주;박명관
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1845-1855
    • /
    • 2004
  • This paper presents the forward kinematics of the Casing Oscillator that is a construction machine. The Structure of the Casing Oscillator is similar to those of 4 degree-of-freedom mechanisms with a redundancy. With analytical (geometrical) methods, the solutions of the forward position kinematics problem are significantly found by both solving an 8$^{th}$ -order polynomial equation in one unknown variable and using one over-constraint geometrical equation which can be derived under the condition of a redundancy. The proposed forward kinematics has closed-form solutions and allows Auto-Balancing control of the moving platform in real time. Numerical examples are presented and the results are verified by an inverse kinematics analysis.

신경망을 이용한 공작기계 병렬 매니퓰레이터의 기구학 특성 분석 (Analysis on Kinematic Characteristics of a Machine Tool Parallel Manipulator Using Neural Network)

  • 이제섭;고준빈
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.1-7
    • /
    • 2008
  • This paper describes the kinematics which is a new type of parallel manipulator, and the neural network is applied to solving the forward kinematics problem. The parallel manipulator called it as a Stewart platform has an easy and unique solution about the inverse kinematics. However, the forward kinematics is difficult to get a solution because of the lack of an efficient algorithm caused by its highly nonlinearity. This paper proposes the neural network scheme of an Newton-Raphson method alternatively. It is found that the neural network can be improved its accuracy by adjusting the offset of the obtained result.

마이크로 부품 조립을 위한 평면 3 자유도 병렬 정렬기의 최적설계 (Design Optimization of Planar 3-DOF Parallel Manipulator for Alignment of Micro-Components)

  • 이정재;송준엽;이문구
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.322-328
    • /
    • 2011
  • This paper presents inverse kinematics and workspace analysis of a planar three degree-of-freedom (DOF) parallel manipulator. Furthermore, optimization problem of the manipulator is presented. The manipulator adopts PRR (Prismatic-Revolute-Revolute) mechanism and the prismatic actuators are fixed to the base. This leads to a reduction of the inertia of the moving links and hence enables it to move with high speed. The actuators are linear electric motors. First, the mechanism based on the geometry of the manipulator is introduced. Second, a workspace analysis is performed. Finally, design optimization is carried out to have large workspace. The proposed approach can be applied to the design optimization of various three DOF parallel manipulators in order to maximize their workspace. The performance of mechanism is improved and satisfies the requirements of workspace to align micro-components.

2단 평행기구 로봇 암의 실시간 순방향 기구학 해석 (Real-time direct kinematics of a double parallel robot arm)

  • 이민기;박근우
    • 대한기계학회논문집A
    • /
    • 제21권1호
    • /
    • pp.144-153
    • /
    • 1997
  • The determination of the direct kinematics of the parallel mechanism is a difficult problem but has to be solved for any practical use. This paper presents the efficient formulation of the direct kinematics for double parallel robot arm. The robot arm consists of two parallel mechanism, which generate positional and orientational motions, respectively. These motions are decoupled by a passive central axis which is composed of four revolute joints and one prismatic joint. For a set of given lengths of linear actuators, the direct kinematics will find the joint displacements of th central axis from geometric constraints in each parallel mechanism. Then the joint displacements will be converted into the position and the orientation of the end effector of the robot arm. The proposed formulation is decoupled and compacted so that it will be implemented as a real-time direct kinematics. With the proposed formulation, we analyze the motion of the double parallel robot and show its characteristics. Specially, we investigate the workspace in terms of positional space as well as orientational space.

시변 장애물 회피 동작 계획을 위한 수학적 접근 방법 (A mathematical approach to motion planning for time-varying obstacle avoidance)

  • 고낙용;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.388-393
    • /
    • 1990
  • A robot manipulator and an obstacle are described mathematically in joint space, with the mathematical representation for the collision between the robot manipulator and the obstacle. Using these descriptions, the robot motion planning problem is formulated which can be used to avoide a time varying obstacle. To solve the problem, the constraints on motion planning are discretized in joint space. An analytical method is proposed for planning the motion in joint space from a given starting point to the goal point. It is found that solving the inverse kinematics problem is not necessary to get the control input to the joint motion controller for collision avoidance.

  • PDF

스튜어트 플랫폼 순기구학 해의 실시간 추정기법 (Real-Time Estimation of Stewart Platform Forward Kinematic Solution)

  • 정규홍;이교일
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1632-1642
    • /
    • 1994
  • The Stewart Platform is a six-degree-of-freedom in-parallel-actuated manipiulator mechanism. The kinematic behavior of parallel mechanisms shows inverse characteristics as compared that of serial mechanisms; i.e, the inverse kinematic problem of Stewart Platform is straightforward, but no closed form solution of the forward kinematic problem has been previously presented. Thus it is difficult to calculate the 6 DOF displacement of the platform from the measured lengths of the six actuators in real time. Here, a real-time estimation algorithm which solves the Stewart Platform kinematic problem is proposed and tested through computer simulations and experiments. The proposed algorithm shows stable convergence characteristics, no estimation errors in steady state and good estimation performance with higher sampling rate. In experiments it is shown that the estimation result is the same as that of simulation even in the presence of measurement noise.

평판 디스플레이 비전 정렬 시스템의 기구학 및 제어 (Kinematics and Control of a Visual Alignment System for Flat Panel Displays)

  • 권상주;박찬식;이상무
    • 제어로봇시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.369-375
    • /
    • 2008
  • The kinematics and control problem of a visual alignment system is investigated, which plays a crucial role in the fabrication process of flat panel displays. The first solution is the inverse kinematics of a 4PPR parallel alignment mechanism. It determines the driving distance of each joint to compensate the misalignment between mask and panel. Second, an efficient vision algorithm for fast alignment mark recognition is suggested, where by extracting essential feature points to represent the geometry of a mark, the geometric template matching enables much faster object recognition comparing with the general template matching. Finally, the overall visual alignment process including the kinematic solution, vision algorithm, and joint control is implemented and experimental results are given.

스튜어트 플랫폼의 기구학적 교정기법에 관한 연구 (Study on Kinematic Calibration Method of Stewart Platforms)

  • 구상화;손권
    • 제어로봇시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.168-172
    • /
    • 2001
  • The accuracy problem of robot manipulators has long been one of the principal concerns in robot design and control. A practical and economical way of enhancing the manipulator accuracy, without affecting its hardware, is kinematic calibration. In this paper an effective and practical method is presented for kinematic calibration of Stewart platforms. In our method differential errors in kinematical parameters are linearly related to differential errors in the platform pose, expressed through the forward kinematics. The algorithm is tested using simulated measurement in which measurement noise is included.

  • PDF