• Title/Summary/Keyword: Inverse Hysteresis Model

Search Result 25, Processing Time 0.035 seconds

Inverse Compensation of Hysteresis in Ferromagnetic Materials (강자성체의 히스테리시스 역 보상 모델)

  • 박영우;한광섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1470-1474
    • /
    • 2004
  • This paper addresses the development of inverse compensation techniques for a class of ferromagnetic transducers including magnetostrictive actuators. In this work, hysteresis is modeled through the domain wall theory originally proposed by Jiles and Atherton[1]. This model is based on the quantification of the energy required to translate domain walls pinned at inclusions in the material with the magnetization at a given field level specified through the solution of an ordinary differential equation. A complementary differential equation is then employed to compute the inverse which can be used to compensate for hysteresis and nonlinear dynamics in control design.

  • PDF

Positioning control of pzt actuators using neuro control with hysteresis model (ICCAS 2003)

  • Lee, Byung-Ryong;Lee, Soo-Hee;Yang, Soon-Yong;Ahn, Kyung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.382-385
    • /
    • 2003
  • In this paper, in order to improve the control performance of piezoelectric actuator, an integrated control structure is proposed. The control structure consists of inverse hysteresis model , to compensate the hysteresis nonlinearty problem, and feedforward - feedback controller to give a good tracking performance. The inverse hysteresis model and neural network are used as feed-forward controller, and PID controller is used as a feedback controller. From diverse experiments it is concluded that the proposed control scheme gives good tracking performance than the classical control does.

  • PDF

Controller Design for a Piezoelectric Actuator Based on the Inverse Hysteresis Model

  • Ahn, Hyun-Sik;Park, Seung-Man
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.60.6-60
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ Modeling of a Piezoelectric Actuator $\textbullet$ Inverse Hysteresis Modeling and Linearization $\textbullet$ Controller Design: PID plus Repetitive Controller $\textbullet$ Simulation Results $\textbullet$ Conclusion

  • PDF

Hysteresis Compensation in Piezoceramic Actuators Through Preisach Model Inversion (Preisach 모델을 이용한 압전액츄에이터 이력 보상)

  • Chung C.Y.;Lee D.H.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1074-1078
    • /
    • 2005
  • In precision positioning applications, such as scanning tunneling microscopy and diamond turning machines [1], it is often required that actuators have nanometer resolution in displacement, high stiffness, and fast frequency response. These requirements are met by the use of piezoceramic actuators. A major limitation of piezoceramic actuators, however, is their lack of accuracy due to hysteresis nonlinearity and drift. The maximum error due to hysteresis can be as much as 10-15% of the path covered if the actuators are run in an open-loop fashion. Hence, the accurate control of piezoceramic actuators requires a control strategy that incorporates some form of compensation for the hysteresis. One approach is to develop an accurate model of the hysteresis and the use the inverse as a compensator. The Preisach model has frequently been employed as a nonlinear model for representing the hysteresis, because it encompasses the basic features of the hysteresis phenomena in a conceptually simple and mathematically elegant way. In this paper, a new numerical inversion scheme of the Preisach model is developed with an aim of compensating hysteresis in piezoceramic actuators. The inversion scheme is implemented using the first-order reversal functions and is presented in a recursive form. The inverted model is then incorporated in an open-loop control strategy that regulates the piezoceramic actuator and compensates for hysteretic effects. Experimental results demonstrate satisfactory regulation of the position of the piezoceramic actuator to the desired trajectories.

  • PDF

Characteristics Improvement of a PZT Actuator for Metal Printing (메탈 프린팅용 압전액추에이터의 특성개선)

  • Yun, S.N.;Ham, Y.B.;Kim, C.Y.;Park, P.Y.;Kang, J.H.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.162-167
    • /
    • 2005
  • The purpose of this paper is to improve the hysteresis characteristics of a stack type piezoelectric actuator using system identification and tracking control. Recently, several printing methods that are cost less and faster than previous semiconductor processes have been developed for the production of electric paper and RFID(Radio Frequency IDentification). The system proposed in this study prints by spraying the molten metal. And this system consist of a nozzle, heating furnace, operating actuator and an XYZ 3-axis stage. As an operating system, the piezoelectric(PZT) actuator is a very useful tool for position control of the metal printing system. However, the PZT actuator has a hysteresis nonlinearity due to the ferroelectric characteristics of the PZT element. This hysteresis causes problem position control characteristics in the system and deteriorates the performance of the system. In this study, an investigation was conducted to improve the hysteresis characteristics of the PZT actuator that has an output displacement for the input voltage. In order to reduce the hysteresis nonlinearity of the PZT actuator, this proposed a inverse hysteresis model and a mathematic modeling method that can express the geometric relationship between voltage and displacement. In addition, system identification and PID control methods were examined. Also, it was confirmed that the proposed control strategy gives good tracking performance.

  • PDF

Precision position control of piezoelectric actuator (압전액추에이터 정밀 위치 제어)

  • Yun S.;Kim C.Y.;Ham Y.B.;Jo J.;Ahn B.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.531-536
    • /
    • 2005
  • The purpose of this paper is to improve the hysteresis characteristics of a stack type piezoelectric actuator using system identification and tracking control. Recently, several printing methods that cost less and are faster than previous semiconductor processes have been developed for the production of electric paper and RFID. The system proposed in this study prints by spraying the molten metal, and consists of a nozzle, heating furnace, operating actuator, and an XYZ 3-axis stage, As an operating system, the piezoelectric(PZT) method has very valuable uses. However, the PZT actuator has a very big hysteresis characteristic due to the ferroelectric characteristics of the PZT element. This causes problems in the system position control characteristics and deteriorates the performance of the system. In this study, an investigation was conducted to improve the hysteresis characteristics of the PZT actuator that has an output displacement for the input voltage. The study proposed a inverse hysteresis model, a mathematic modeling method that can express the geometric relationship between voltage and displacement, in order to reduce the hysteresis of the PZT actuator. In addition, system identification and PID control methods were examined. Also, it was confirmed that the proposed control strategy gives good precision position control performance.

  • PDF

Identification of the Distribution Function of the Preisach Model using Inverse Algorithm

  • Koh, Chang-Seop;Ryu, Jae-Seop
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.168-173
    • /
    • 2002
  • A new identification algorithm for the Preisach model is presented. The algorithm treats the identification procedure of the Preisach model as an inverse problem where the independent variables are parameters of the distribution function and the objective function is constructed using only the initial magnetization curve or only tile major loop of the hysteresis curve as well as the whole reversal curves. To parameterize the distribution function, the Bezier spline and Gaussian function are used for the coercive and interaction fields axes, respectively. The presented algorithm is applied to the ferrite permanent magnets, and the distribution functions are correctly found from the major loop of the hysteresis curve or the initial magnetization curve.

Iron Loss Analysis Considering Excitation Conditions Under Alternating Magnetic Fields

  • Hong, Sun-Ki;Koh, Chang-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.33-38
    • /
    • 2010
  • In this paper, the nature of iron loss in electrical steel during alternating field excitation is investigated more precisely. The exact definition of AC iron loss is cleared by accurately measuring the iron loss for conditions of both the sinusoidal magnetic field and sinusoidal magnetic flux density. The results of this approach to iron loss calculations in electrical steel are compared to experimentally-measured losses. In addition, an inverse hysteresis model considering eddy current loss was developed to analyze the iron loss when the input is the voltage source. With this model, the inrush current in the inductor or transformer as well as the iron loss can be calculated.

Modeling and Motion Control of Piezoelectric Actuator (비선형성을 고려한 압전소자의 모델링 및 운동제어)

  • 박은철;김영식;김인수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.630-637
    • /
    • 2003
  • This paper proposes a new modeling scheme to describe the hysteresis and the dynamic characteristics of piezoelectric actuators in the inchworm and develops a control algorithm for the precision motion control. From the analysis of piezoelectric actuator behaviors, the hysteresis can be described by the functions of a maximum input voltage. The dynamic characteristics are also identified by the frequency domain modeling technique based on the experimental data. For the motion control, the hysteresis behavior is compensated by the inverse hysteresis model. The dynamic stiffness of an inchworm is generally low compared to its driving condition, so mechanical vibration may degenerate the motion accuracy of the inchworm. Therefore, the sliding mode control and the Kalman filter are developed for the precision motion control of the inch-warm. To demonstrate the effectiveness of the proposed modeling schemes and control algorithm, experiment validations are performed.

  • PDF

Everett Function Formulation Using Minor Loops and Magnetization-dependent Model and Hysteresis Characteristics Simulation (마이너루프와 자화의존 모델을 이용한 에버? 함수 생성과 히스테리시스 특성 시뮬레이션)

  • Kim, Hyeoung-Seop;Hong, Sun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1725-1731
    • /
    • 2017
  • In hysteresis simulation, the Preisach model is most widely used as the reliability. However, since the first-order transition curves used in the conventional Preisach model are very inconvenient for actual measurement, many researches have been made to simplify them. In this study, the minor loops obtained along the initial magnetization curve are used to obtain the Everett function used in the Preisach model. In other words, The Everett table is constructed by using the minor loops, and are applied to the magnetization dependent Preisach model to reconstruct the Everett table. In order to minimize the error, the spline interpolation method is used to complete the final Everett table and the hysteresis loop simulation is performed with the Everett table. Furthermore, it is applied to the inductor analysis to perform not only sinusoidal wave and square wave drive but also PWM wave drive considering hysteresis. The validity of the proposed method is confirmed by comparison with simulation and experiment.