• Title/Summary/Keyword: Inverse Dynamic

Search Result 412, Processing Time 0.025 seconds

Design of a Neuro-Euzzy Controller for Hydraulic Servo Systems (유압서보 시스템을 위한 뉴로-퍼지 제어기 설계)

  • 김천호;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.101-111
    • /
    • 1993
  • Many processes such as machining, injection-moulding and metal-forming are usually operated by hydraulic servo-systems. The dynamic characteristics of these systems are complex and highly non-linear and are often subjected to the uncertain external disturbances associated with the processes. Consequently, the conventional approach to the controller design for these systems may not guarantee accurate tracking control performance. An effective neuro-fuzzy controller is proposed to realize an accurate hydraulic servo-system regardless of the uncertainties and the external disturbances. For this purpose, first, we develop a simplified fuzzy logic controller which have multidimensional and unsymmetric membership functions. Secondly, we develop a neural network which consists of the parameters of the fuzzy logic controller. It is show that the neural network has both learning capability and linguistic representation capability. The proposed controller was implemented on a hydraulic servo-system. Feedback error learning architecture is adopted which uses the feedback error directly without passing through the dynamics or inverse transfer function of the hydraulic servo-system to train the neuro-fuzzy controller. A series of simulations was performed for the position-tracking control of the system subjected to external disturbances. The results of simulations show that regardless of inherent non-linearities and disturbances, an accuracy tracking-control performance is obtained using the proposed neuro-fuzzy controller.

Biomechanical Analysis of Arm Motion during Steering Using Motion Analysis Technique (동작분석기법을 이용한 조향동작에 대한 팔의 생체역학적 특성분석)

  • Kim, Young-Hwan;Tak, Tea-Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1391-1398
    • /
    • 2011
  • Biomechanical analysis of arm motion during steering was performed using a motion analysis technique. Three-dimensional position data for each part of arm are fed into an interactive model combining a musculoskeletal arm model and the mechanical steering system to calculate joint angles and torques using inverse kinematic and dynamic analyses, respectively. The analysis shows that elbow pronation/supination, wrist flexion/extension, shoulder adduction/abduction, and shoulder flexion/extension have significant magnitudes. Sensitivity analysis of the arm joint motion with respect to seating posture and steering wheel configuration is carried out to investigate the qualitative influence of the seating posture and driver's seat configuration on the steering behavior.

A Case Study on the Polar Low Developed over the Sea Near Busan on 11~12 February 2011 (2011년 2월 11~12일 부산 근해에서 발달한 극저기압에 대한 사례연구)

  • Lee, Jae Gyoo;Kim, Hae-Min;Kim, Yu-Jin
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.301-319
    • /
    • 2016
  • The evolutionary process of the polar low, which caused the heavy snowfall in the East Coast area on 11~12 February 2011, was investigated to describe in detail using synoptic weather charts, satellite imageries, and ERA (European Centre for Medium-Range Weather Forecasts Re-Analysis) -Interim reanalysis data. It was revealed that 1) the polar low was generated over the sea near Busan where a large cyclonic shear in the inverted trough branched from the parent low existed, 2) during the developing and mature stages, there was a convectively unstable region in the lower layer around the polar low and its south side, 3) the polar low was developed in the region where the static stability in the 500~850 hPa layer was the lowest, 4) the result from the budget analysis of the vorticity equation indicated that the increase in the vorticity at the lower atmosphere, where the polar low was located, was dominated mainly by the stretching term, 5) the warm core structure of the polar low was identified in the surface-700 hPa layer during the mature stage, 6) there was a close inverse relationship between a development of the polar low and the height of the dynamic tropopause over the polar low, and 7) for generation and development of the polar low, large-scale circulation systems, such as upper cold low and its combined short wave trough, major low (parent low), and polar air outbreak, should be presented, indicating that the polar low has the nature of the baroclinic disturbance.

Solution of Eigenvalue Problems for Nonclassically Damped Systems with Multiple Frequencies (중복근을 갖는 비비례 감쇠시스템의 고유치 해석)

  • 김만철;정형조;오주원;이인원
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.205-216
    • /
    • 1998
  • A solution method is presented to solve the eigenvalue problem arising in the dynamic analysis of nonclassicary damped structural systems with multiple eigenvalues. The proposed method is obtained by applying the modified Newton-Raphson technique and the orthonormal condition of the eigenvectors to the linear eigenproblem through matrix augmentation of the quadratic eigenvalue problem. In the iteration methods such as the inverse iteration method and the subspace iteration method, singularity may be occurred during the factorizing process when the shift value is close to an eigenvalue of the system. However, even though the shift value is an eigenvalue of the system, the proposed method provides nonsingularity, and that is analytically proved. Since the modified Newton-Raphson technique is adopted to the proposed method, initial values are need. Because the Lanczos method effectively produces better initial values than other methods, the results of the Lanczos method are taken as the initial values of the proposed method. Two numerical examples are presented to demonstrate the effectiveness of the proposed method and the results are compared with those of the well-known subspace iteration method and the Lanczos method.

  • PDF

Development of Autonomous Algorithm Using an Online Feedback-Error Learning Based Neural Network for Nonholonomic Mobile Robots (온라인 피드백 에러 학습을 이용한 이동 로봇의 자율주행 알고리즘 개발)

  • Lee, Hyun-Dong;Myung, Byung-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.602-608
    • /
    • 2011
  • In this study, a method of designing a neurointerface using neural network (NN) is proposed for controlling nonholonomic mobile robots. According to the concept of virtual master-slave robots, in particular, a partially stable inverse dynamic model of the master robot is acquired online through the NN by applying a feedback-error learning method, in which the feedback controller is assumed to be based on a PD compensator for such a nonholonomic robot. The NN for the online feedback-error learning can composed that the input layer consists of six units for the inputs $x_i$, i=1~6, the hidden layer consists of two hidden units for hidden outputs $o_j$, j=1~2, and the output layer consists of two units for the outputs ${\tau}_k$, k=1~2. A tracking control problem is demonstrated by some simulations for a nonholonomic mobile robot with two-independent driving wheels. The initial q value was set to [0, 5, ${\pi}$].

Design and Implementation of Recurrent Time Delayed Neural Network Controller Using Fuzzy Compensator (퍼지 보상기를 사용한 리커런트 시간지연 신경망 제어기 설계 및 구현)

  • Lee, Sang-Yun;Shin, Woo-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.334-341
    • /
    • 2003
  • In this paper, we proposed a recurrent time delayed neural network(RTDNN) controller which compensate a output of neural network controller. Even if learn by neural network controller, it can occur an bad results from disturbance or load variations. So in order to adjust above case, we used the fuzzy compensator to get an expected results. And the weight of main neural network can be changed with the result of learning a inverse model neural network of plant, so a expected dynamic characteristics of plant can be got. As the results of simulation through the second order plant, we confirmed that the proposed recurrent time delayed neural network controller get a good response compare with a time delayed neural network(TDU) controller. We implemented the controller using the DSP processor and applied in a hydraulic servo system. And then we observed an experimental results.

Synergetics based damage detection of frame structures using piezoceramic patches

  • Hong, Xiaobin;Ruan, Jiaobiao;Liu, Guixiong;Wang, Tao;Li, Youyong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.167-194
    • /
    • 2016
  • This paper investigates the Synergetics based Damage Detection Method (SDDM) for frame structures by using surface-bonded PZT (Lead Zirconate Titanate) patches. After analyzing the mechanism of pattern recognition from Synergetics, the operating framework with cooperation-competition-update process of SDDM was proposed. First, the dynamic identification equation of structural conditions was established and the adjoint vector (AV) set of original vector (OV) set was obtained by Generalized Inverse Matrix (GIM).Then, the order parameter equation and its evolution process were deduced through the strict mathematics ratiocination. Moreover, in order to complete online structural condition update feature, the iterative update algorithm was presented. Subsequently, the pathway in which SDDM was realized through the modified Synergetic Neural Network (SNN) was introduced and its assessment indices were confirmed. Finally, the experimental platform with a two-story frame structure was set up. The performances of the proposed methodology were tested for damage identifications by loosening various screw nuts group scenarios. The experiments were conducted in different damage degrees, the disturbance environment and the noisy environment, respectively. The results show the feasibility of SDDM using piezoceramic sensors and actuators, and demonstrate a strong ability of anti-disturbance and anti-noise in frame structure applications. This proposed approach can be extended to the similar structures for damage identification.

Effect of a Elderly Walker on Joint Kinematics and Muscle Activities of Lower Extremities Using a Human Model (인체 모델을 이용한 노인 보행기의 하지관절 기구학과 근활성에 미치는 영향)

  • Shin, Jun-Ho;Kim, Yoon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1243-1248
    • /
    • 2011
  • The purposes of this study were to develop a dynamic model of a human and to investigate the effect of a walker on an elderly subject's motions, such as sit-to-stand (STS) motion and normal gait, by using this model. A human model consisting of 15 segments and 14 joints was developed, embedded in $RecurDyn^{TM}$, and connected through a Simulink$^{(R)}$ interface with collected motion data. The model was validated by comparisons between joint kinematic results from inverse dynamics (Matlab$^{(R)}$-based in-house program) and from $RecurDyn^{TM}$ simulation during walking. The results indicate that the elderly walker induced a longer movement time in walking, such that the speed of joint flexion/extension was slower than that during a normal gait. The results showed that the muscle activities of parts of the ankle and hamstring were altered by use of the elderly walker. The technique used in this study could be very helpful in applications to biomechanical fields.

A Study of Shorted-Turn Detection in the Cylindrical Synchronous Generator Rotor Windings via Discrete Wavelet Transform (이산 웨이브렛 변환을 이용한 동기발전기 회전자 층간단락 진단에 관한 연구)

  • Kim, Jang-Mok;Kim, Young-Jun;Ahan, Jin-Woo;Kim, Heung-Geun;Jung, Tae-Uk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.570-576
    • /
    • 2006
  • This paper describes a method for the detection of shorted-turn in the cylindrical synchronous generator rotor windings based on the discrete wavelet transform. Multi-resolution analysis(MRA) based on discrete wavelet transform provides a set of decomposed signals in independent frequency bands, which contain independent dynamic information due to the orthogonality of wavelet function. In the proposed method, shorted-turn detection in rotor windings is based on the decomposition of the rotor currents, where wavelet coefficients of these signals have been extracted. Comparing these extracted coefficients is used for diagnosing the healthy machine from faulty machine. Experimental results are presented for healthy, and machines with 25%, 42%, 67%, 83%, 99% inter-turn short circuits in a rotor slot. Deviation of wavelet coefficients in healthy mode from faulty modes depicts the inverse proportion of shorted-turns. Experimental results show the effectiveness of the proposed method for shorted-turn detection in the cylindrical synchronous generator rotor windings.

Estimation of Shear-Wave Velocities of Layered Half-Space Using Full Waveform Inversion with Genetic Algorithm (유전 알고리즘을 활용한 완전파형역산 기법의 층상 반무한 지반 전단파 속도 추정)

  • Lee, Jin Ho;Lee, Se Hyeok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.221-230
    • /
    • 2021
  • This paper proposes full waveform inversion (FWI) for estimating the physical properties of a layered half-space. An FWI solution is obtained using a genetic algorithm (GA), which is a well-known global optimization approach. The dynamic responses of a layered half-space subjected to a harmonic vertical disk load are measured and compared with those calculated using the estimated physical properties. The responses are calculated using the thin-layer method, which is accurate and efficient for layered media. Subsequently, a numerical model is constructed for a layered half-space using mid-point integrated finite elements and perfectly matched discrete layers. An objective function of the global optimization problem is defined as the L2-norm of the difference between the observed and estimated responses. A GA is used to minimize the objective function and obtain a solution for the FWI. The accuracy of the proposed approach is applied to various problems involving layered half-spaces. The results verify that the proposed FWI based on a GA is suitable for estimating the material properties of a layered half-space, even when the measured responses include measurement noise.