• Title/Summary/Keyword: Invariant moment

Search Result 85, Processing Time 0.024 seconds

CBIRS/TB Using Color Feature Information for A tablet Recognition (알약 인식을 위해 색 특징정보를 이용한 CBIRS/TB)

  • Koo, Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.49-56
    • /
    • 2014
  • This thesis proposes CBIRS/TB method that uses a tablet's color distribution information and form distinctive in content-based search. CBIRS/TB can avoid misuses and improper tablet uses by conducting content-based search in commonly prescribed tablets. The existing FE-CBIRS system is limited to recognizing only the image of color and shape of the tablet, that leads to applying insufficient form-specific information. While CBIRS/TB utilizes average, standard deviation, hue and saturation of each tablets in color, brightness, and contrast, FE-CBIRS has partial-sphere application problem; only applying the typical color of the tablet. Also, in case of the shape-specific-information, Invariant Moment is mainly used for the extracted partial-spheres. This causes delayed processing time and accuracy problems. Therefore, to improve this setback, this thesis indexed color-specific-information of the extracted images into categorized classification for improved search speed and accuracy.

Parameterized Modeling of Spatially Varying PSF for Lens Aberration and Defocus

  • Wang, Chao;Chen, Juan;Jia, Hongguang;Shi, Baosong;Zhu, Ruifei;Wei, Qun;Yu, Linyao;Ge, Mingda
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.136-143
    • /
    • 2015
  • Image deblurring by a deconvolution method requires accurate knowledge of the blur kernel. Existing point spread function (PSF) models in the literature corresponding to lens aberrations and defocus are either parameterized and spatially invariant or spatially varying but discretely defined. In this paper, a parameterized model is developed and presented for a PSF which is spatially varying due to lens aberrations and defocus in an imaging system. The model is established from the Seidel third-order aberration coefficient and the Hu moment. A skew normal Gauss model is selected for parameterized PSF geometry structure. The accuracy of the model is demonstrated with simulations and measurements for a defocused infrared camera and a single spherical lens digital camera. Compared with optical software Code V, the visual results of two optical systems validate our analysis and proposed method in size, shape and direction. Quantitative evaluation results reveal the excellent accuracy of the blur kernel model.

Content-based Image Retrieval using Feature Extraction in Wavelet Transform Domain (웨이브릿 변환 영역에서 특징추출을 이용한 내용기반 영상 검색)

  • 최인호;이상훈
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.415-425
    • /
    • 2002
  • In this paper, we present a content-based image retrieval method which is based on the feature extraction in the wavelet transform domain. In order to overcome the drawbacks of the feature vector making up methods which use the global wavelet coefficients in subbands, we utilize the energy value of wavelet coefficients, and the shape-based retrieval of objects is processed by moment which is invariant in translation, scaling, rotation of the objects The proposed methods reduce feature vector size, and make progress performance of classification retrieval which provides fast retrievals times. To offer the abilities of region-based image retrieval, we discussed the image segmentation method which can reduce the effect of an irregular light sources. The image segmentation method uses a region-merging, and candidate regions which are merged were selected by the energy values of high frequency bands in discrete wavelet transform. The region-based image retrieval is executed by using the segmented region information, and the images are retrieved by a color, texture, shape feature vector.

  • PDF

FE-CBIRS Using Color Distribution for Cut Retrieval in IPTV (IPTV에서 컷 검색을 위한 색 분포정보를 이용한 FE-CBIRS)

  • Koo, Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.91-97
    • /
    • 2009
  • This paper proposes novel FE-CBIRS that finds best position of a cut to be retrieved based on color feature distribution in digital contents of IPTV. Conventional CBIRS have used a method that utilizes both color and shape information together to classify images, as well as a method that utilizes both feature information of the entire region and feature information of a partial region that is extracted by segmentation for searching. Also, in the algorithm, average, standard deviation and skewness values are used in case of color features for each hue, saturation and intensity values respectively. Furthermore, in case of using partial regions, only a few major colors are used and in case of shape features, the invariant moment is mainly used on the extracted partial regions. Due to these reasons, some problems have been issued in CBIRS in processing time and accuracy so far. Therefore, in order to tackle these problems, this paper proposes the FE-CBIRS that makes searching speed faster by classifying and indexing the extracted color information by each class and by using several cuts that are restricted in range as comparative images.

A Study on LRFD Reliability Based Design Criteria of RC Flexural Members (R.C. 휨부재(部材)의 L.R.F.D. 신뢰성(信賴性) 설계기준(設計基準)에 관한 연구(研究))

  • Cho, Hyo Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.21-32
    • /
    • 1981
  • Recent trends in design standards development in some European countries and U.S.A. have encouraged the use of probabilistic limit sate design concepts. Reliability based design criteria such as LSD, LRFD, PBLSD, adopted in those advanced countries have the potentials that they afford for symplifying the design process and placing it on a consistent reliability bases for various construction materials. A reliability based design criteria for RC flexural members are proposed in this study. Lind-Hasofer's invariant second-moment reliability theory is used in the derivation of an algorithmic reliability analysis method as well as an iterative determination of load and resistance factors. In addition, Cornell's Mean First-Order Second Moment Method is employed as a practical tool for the approximate reliability analysis and the derivation of design criteria. Uncertainty measures for flexural resistance and load effects are based on the Ellingwood's approach for the evaluation of uncertainties of loads and resistances. The implied relative safety levels of RC flexural members designed by the strength design provisions of the current standard code were evaluated using the second moment reliability analysis method proposed in this study. And then, resistance and load factors corresponding to the target reliability index(${\beta}=4$) which is considered to be appropriate level of reliability considering our practices are calculated by using the proposed methods. These reliability based factors were compared to those specified by our current ultimate strength design provisions. It was found that the reliability levels of flexural members designed by current code are not appropriate, and the code specified resistance and load factors were considerably different from the reliability based resistance and load factors proposed in this study.

  • PDF