KSII Transactions on Internet and Information Systems (TIIS)
/
제8권9호
/
pp.3177-3195
/
2014
In many moving object detection problems of an aerial video, accurate and robust stabilization is of critical importance. In this paper, a novel accurate image alignment algorithm for aerial electronic image stabilization (EIS) is described. The feature points are first selected using optimal derivative filters based Harris detector, which can improve differentiation accuracy and obtain the precise coordinates of feature points. Then we choose the Delaunay Triangulation edges to find the matching pairs between feature points in overlapping images. The most "useful" matching points that belong to the background are used to find the global transformation parameters using the projective invariant. Finally, intentional motion of the camera is accumulated for correction by Sage-Husa adaptive filtering. Experiment results illustrate that the proposed algorithm is applied to the aerial captured video sequences with various dynamic scenes for performance demonstrations.
기존의 OCR 엔진은 보정된 환경에서 읽혀진 서류 영상에 맞게 설계되어있다. 스마트 폰을 비롯한 검정 화면 거리가 보정되지 않은 기기에서 읽혀진 영상에서는 삼차원 원근 투시에 의한 찌그러짐 또는 곡면상에서의 찌그러짐 등이 핵심적인 문제점들로 여겨진다. 휴대용 단말기에서 읽혀진 영상들에서의 OCR 기능에 대한 요구가 증가일로에 있는 시점에서, 본 논문에서는 문제점들을 세 가지로 구분하고 - 회전에 무관한 문자 영역 추출, 폰트 등의 크기에 무관한 문자 선 영역 추출, 3차원 매핑 이론 - 이를 해결하기위한 방법을 제시하였다. 이러한 방법론을 통합하여 카메라 영상 위에서의 OCR을 개발하였다.
본 논문에서는 옥외 환경에 강인한 영상 감시알고리듬을 구현하는 과정을 기술하였다. 옥외 감시시스템의 어려운 처리 과정들 중 하나는 배경화면을 효과적으로 갱신하는 것이다. 배경 영상에는 건물, 나무들, 이동하는 구름 및 기타 다른 물체들의 그림자를 포함하기 때문에. 시간과 조명광에 따라 변화한다. 이는 옥외에서의 감시시스템의 성능을 저하시킨다. 따라서 본 논문에서는 배경 영상을 효과적으로 갱신하기 위해 적응 혼합 가우시안 필터와 컬러불변성을 화소레벨에서 적용하여 옥외에서도 강인한 영상 감시알고리듬을 제안하였다. 그 결과, 다양한 그림자가 있는 옥외에서 움직이는 대상 물체를 검출할 수 있음을 확인하였다.
본 연구에서는 고해상도 위성영상을 이용하여 기존의 훈련지역 선정과 같은 사용자 개입 없이, 영상의 다중분광 및 색상 불변 특정 정보를 통합한 영역기반 건물 추출 방법론을 개발하고, 이를 IKONOS와 QuickBird 영상에 적용하여 개발된 방법의 효용성을 평가하는데 목적이 있다. 이를 위해 우선 영상을 시드기반 영역확장기법인 MSRG기법을 이용하여 분할한 후, 건물 추출의 편의성을 높이기 위한 전처리 과정의 일환으로 분할된 영상에서 식생과 그림자 객체를 자동으로 탐지하여 제거하였다. 객체단위의 건물 추출을 위해 다중분광 및 색상 불변 특정 정보가 통합된 영역 병합 과정을 통해 식생과 그림자 객체가 제거된 분할영역에 대하여 영역 병합을 수행하였고, 최종적으로 병합된 분할영역의 형상 특징 정보를 이용하여 건물 영역을 추출하였다. 또한 보다 완전성 높은 건물 추출을 위해 일반화 기법을 이용하여 추출된 건물의 외곽선을 단순화하였다. 실험 결과, 대상지역 모두에서 80% 이상의 건물탐지 정확도를 보였으며 시각적으로도 우수한 결과를 도출하였다. 결과적으로 제안된 방법은 고해상도 위성영상의 건물 추출에 유용하게 적용될 수 있으리라 판단된다.
본 논문에서는 방사선 영상에서의 영역에 대한 임의의 조합 및 푸리에 기술자를 이용한 물체 검색 방법을 제안한다. 영상에서의 물체 인식에 있어 폐색 현상은 가장 문제가 된다. 하지만 방사선 영상에서는 다른 객체에 의해 폐색되는 현상이 발생하지 않는 이점이 있다. 이는 방사선 영상은 객체를 투과하는 방사선 양을 표현하기 때문이다. 이러한 방사선 영상의 특성을 고려할 때 객체를 찾는 과정에서 모양 기반의 기술자를 사용하는 것은 매우 효과적일 수 있다. 제안된 객체 추출 방법은, 영역 분할, 분할된 영역의 모든 경우의 수에 대한 조합 수행, 조합된 영역과 모델 영상과의 비교, 이렇게 세 단계로 구성된다. 또한 모델과의 비교 이전에 예상 가능한 불필요한 연산을 조합 과정에서 제거하였다. 모델과의 비교에 있어 회전과 이동에 강인한 푸리에 기술자를 이용하였다. 또한 크기 변화에 강인하기 위해 정규화 과정을 적용하였다. 최종적으로 제안된 방법을 통한 객체 추출 성능을 실험을 통해 확인하였다.
Detecting small infrared targets from the low-SCR images at a long distance is very hard. The previous Local Contrast Method (LCM) algorithm based on the human visual system shows a superior performance of detecting small targets by a background suppression technique through local contrast measure. However, its slow processing speed due to the heavy multi-scale processing overhead is not suitable to a variety of real-time applications. This paper presents a lightweight real-time small target detection algorithm, called by the Improved Selective Local Contrast Method (ISLCM), to reduce the scale-invariant computational overhead. The proposed ISLCM applies the improved local contrast measure to the predicted selective region so that it may have a comparable detection performance as the previous LCM while guaranteeing low scale-invariant computational load by exploiting both adaptive scale estimation and small target feature feasibility. Experimental results show that the proposed algorithm can reduce its computational overhead considerably while maintaining its detection performance compared with the previous LCM.
SAR 센서는 마이크로파를 이용한 능동센서로 기상조건에 상관없이 영상을 취득할 수 있다는 장점이 있어, 국토관리 및 재해 모니터링 등에 활발히 활용되고 있다. 주기적으로 취득되는 SAR 영상을 효과적으로 활용하기 위해서는 자동화된 영상 정합기법이 필요하지만 영상의 촬영 시간 및 기하에 따라 다른 양상의 기하조건을 가진 취득됨에 따라 충분한 정합 정확도를 기대하기 어렵다. 이에 본 연구에서는 기울기 속성을 추가한 MI (Mutual Information) 기법과 FMT (Fourier-Mellin Transform)기법, SIFT (Scale-Invariant Feature Transform) 기법을 임의의 변위와 회전 공차를 적용하고, 해상도를 변화시킨 TerraSAR-X 영상에 적용하여 그 결과를 비교하였다. 비교 결과, MI 기법의 경우엔 서로 상이한 기하에서 촬영된 영상에 적용하였을 때에도 일정 크기의 영상소가 다수 분포할 경우 0~2 픽셀 수준의 정확도를 지닐 수 있는 반면, FMT 기법의 경우에는 같은 사물에 대해서도 그 영상소 값이 서로 상이하여 정합 오차가 수십에서 수백 픽셀로 나타났다. 또한 SIFT 기법의 경우에도 영상 정합을 위한 공액점의 정확도가 0~17 % 수준으로 매우 낮아 서로 상이한 기하조건으로 취득된 SAR 영상에 적용이 어려울 것으로 나타났다.
본 논문은 색 일관성을 달성하기 위해 $\chi$-색도 공간에서 고유벡터를 이용하여 본질 영상의 획득에 중대한 영향을 미치는 불변 방향을 검출하는 알고리즘을 제안한다. 이를 위해, 우선 영상을 Finlayson 등이 제안한 방법을 활용하여 $\chi$-색도 공간으로 변환한다. 두 번째로, 불변 방향에 영향을 줄 수 있는 잡음 같은 낮은 빈도를 갖는 데이터들을 제거한다. 세 번째로, 주축 방향과 일치하는 불변 방향을 검출하기 위해, 위 단계에서 추출된 데이터들로부터 가장 큰 고유값에 해당하는 고유벡터를 계산한다. 마지막으로, 검출된 불변 방향을 사용하여 복원함으로써, 본질 영상을 획득한다. 실험 영상은 Barnard 등이 사용한 영상 데이터들 중 일부를 사용하였고, 불변 방향의 검출 성능은 엔트로피 최소화 기법과 비교되었다. 실험 결과, 제안한 기법은 기존 기법에 비해 표준편차가 낮아 불변 방향이 일정하게 검출되었으며, 시간적 측면에서 기존의 기법에 비해 3배 이상 효율적이었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권9호
/
pp.3782-3796
/
2020
A three-dimensional (3D) reconstruction is an important research area in computer vision. The ability to detect and match features across multiple views of a scene is a critical initial step. The tracking matrix W obtained from a 3D reconstruction can be applied to structure from motion (SFM) algorithms for 3D modeling. We often fail to generate an acceptable number of features when processing face or medical images because such images typically contain large homogeneous regions with minimal variation in intensity. In this study, we seek to locate sufficient matching points not only in general images but also in face and medical images, where it is difficult to determine the feature points. The algorithm is implemented on an adaptive threshold value, a scale invariant feature transform (SIFT), affine SIFT, speeded up robust features (SURF), and affine SURF. By applying the algorithm to face and general images and studying the geometric errors, we can achieve quasi-dense matching points that satisfy well-functioning geometric constraints. We also demonstrate a 3D reconstruction with a respectable performance by applying a column space fitting algorithm, which is an SFM algorithm.
본 논문에서는 얼굴 영상간의 위상 차를 이용하여 얼굴을 인식하는 시스템을 제안하였다. 제안된 시스템에서는 KLT(Karhunen-Loeve transform)를 이용하여 복구가 가능하도록 영상을 압축하고, 계산량도 줄였다. 압축된 학습 대상 영상을 미리 제안된 시스템에서 학습시킨 후, 인식 대상 얼굴 영상을 압축시킨다. 압축된 영상과 기존의 학습된 얼굴영상들과의 위상차를 구하고 이 위상차에 여현 함수를 적용하여 그 값이 최대가 되는 얼굴로 인식하도록 하였다. 두 얼굴 영상의 위상차는 벡터 내적방법에 의해 구하여지며, 이를 이용하면 기존의 학습방법을 이용하는 시스템보다 계산이 간단하고 처리시간도 빠르다. 또한 영상간 규준화된 위상차는 조명 및 회전에 불변인식이 가능하고, 여현 함수의 적용으로 이동에도 어느정도 불변인식이 가능하다. 그리고 연결웨이트에는 영상에 대한 정보를 그대로 갖고 있어서, 기존의 신경망과 같은 전체적인 재학습을 하지 않고도 새로운 영상만을 추가학습이 가능하므로 확장학습이 용이하다. 각각 10가지 얼굴영상을 갖는 40 명의 ORL 얼굴영상에 실험한 결과, 인식률이 기존의 방법과 비슷한 8% 오차범위 내에서 학습시간이 PC에서도 수 분밖에 안 걸리는 빠른 얼굴인식이 가능함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.