• 제목/요약/키워드: Invariant Images

검색결과 312건 처리시간 0.029초

단일 자연 영상에서 그림자 검출 및 제거를 위한 선형 회귀 기반의 1D 불변 영상 (Linear Regression-based 1D Invariant Image for Shadow Detection and Removal in Single Natural Image)

  • 박기홍
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권9호
    • /
    • pp.1787-1793
    • /
    • 2018
  • 그림자는 자연 경관에서 관찰되는 일반적인 현상이지만 물체 인식, 특징 검출 및 장면 분석등과 같은 영상 분석에 부정적인 영향을 미치는 요소이므로 디지털 영상에 포함된 그림자 처리는 디지털 영상 분석 과정에서 필수적으로 고려되어야 한다. 본 논문에서는 단일 자연 영상에 포함된 그림자를 검출하고 제거하기 위한 특징 요소 중의 하나인 1D 불변 영상의 획득을 위한 기존 방법들에 대해 기술하고, 선형 회귀 기반의 1D 불변 영상 획득 방법을 제안하였다. 제안하는 방법은 RGB 칼라 영상의 각 채널 간의 밴드 비의 로그를 계산한 후 선형 회귀를 통해 그레이스케일 영상 라인을 획득하고, 최종 1D 불변 영상은 밴드 비의 로그 영상들을 추정된 그레이스케일 영상 라인으로 투영시켜 획득하였다. 실험 결과, 제안하는 방법이 기존의 엔트로피 최소화 기반의 투영 각도를 계산하는 방법보다 계산 복잡도가 낮았으며, 1D 불변 영상을 이용한 그림자가 검출 및 제거가 효과적으로 수행됨을 보였다.

Affine-Invariant Image normalization for Log-Polar Images using Momentums

  • Son, Young-Ho;You, Bum-Jae;Oh, Sang-Rok;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1140-1145
    • /
    • 2003
  • Image normalization is one of the important areas in pattern recognition. Also, log-polar images are useful in the sense that their image data size is reduced dramatically comparing with conventional images and it is possible to develop faster pattern recognition algorithms. Especially, the log-polar image is very similar with the structure of human eyes. However, there are almost no researches on pattern recognition using the log-polar images while a number of researches on visual tracking have been executed. We propose an image normalization technique of log-polar images using momentums applicable for affine-invariant pattern recognition. We handle basic distortions of an image including translation, rotation, scaling, and skew of a log-polar image. The algorithm is experimented in a PC-based real-time vision system successfully.

  • PDF

주파수 영역에서 각도 투영법을 이용한 회전 및 천이 불변 특징 추출 (Rotation and Translation Invariant Feature Extraction Using Angular Projection in Frequency Domain)

  • 이범식;김문철
    • 한국HCI학회논문지
    • /
    • 제1권2호
    • /
    • pp.27-33
    • /
    • 2006
  • 본 논문은 회전 및 천이 불변 이미지 텍스처 검색의 새로운 방식을 소개한다. 주파수 영역의 극 좌표계에서 동일한 공간주파수에서 각도방향으로 투영을 함으로써 각도 투영법을 만들어 냈으며, 제안된 각도 투영법을 이용하여 주파수 영역에서 푸리에 계수의 합과 표준 편차를 특징벡터로 이용하였다. 각도 투영법을 쉽게 구현하기 위하여 극 좌표계에서 라돈변환이 수행된다. 실험 시 MPEG-7 데이터를 이용하였으며 그 결과는 여러 텍스처 이미지를 검 색하는데 있어서 특징을 잘 구별해 내는 결과를 보여준다. 또한 제안된 회전 및 천이불변 특징 추출 알고리듬은 등 방성 텍스처나 국부적인 방향성을 보이는 텍스처 영상 검색에서 효율적인 검색률을 보인다.

  • PDF

Iris Recognition Based on a Shift-Invariant Wavelet Transform

  • Cho, Seongwon;Kim, Jaemin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권3호
    • /
    • pp.322-326
    • /
    • 2004
  • This paper describes a new iris recognition method based on a shift-invariant wavelet sub-images. For the feature representation, we first preprocess an iris image for the compensation of the variation of the iris and for the easy implementation of the wavelet transform. Then, we decompose the preprocessed iris image into multiple subband images using a shift-invariant wavelet transform. For feature representation, we select a set of subband images, which have rich information for the classification of various iris patterns and robust to noises. In order to reduce the size of the feature vector, we quantize. each pixel of subband images using the Lloyd-Max quantization method Each feature element is represented by one of quantization levels, and a set of these feature element is the feature vector. When the quantization is very coarse, the quantized level does not have much information about the image pixel value. Therefore, we define a new similarity measure based on mutual information between two features. With this similarity measure, the size of the feature vector can be reduced without much degradation of performance. Experimentally, we show that the proposed method produced superb performance in iris recognition.

Robust 2-D Object Recognition Using Bispectrum and LVQ Neural Classifier

  • HanSoowhan;woon, Woo-Young
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.255-262
    • /
    • 1998
  • This paper presents a translation, rotation and scale invariant methodology for the recognition of closed planar shape images using the bispectrum of a contour sequence and the learning vector quantization(LVQ) neural classifier. The contour sequences obtained from the closed planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The higher order spectra based on third order cumulants is applied to tihs contour sample to extract fifteen bispectral feature vectors for each planar image. There feature vector, which are invariant to shape translation, rotation and scale transformation, can be used to represent two0dimensional planar images and are fed into a neural network classifier. The LVQ architecture is chosen as a neural classifier because the network is easy and fast to train, the structure is relatively simple. The experimental recognition processes with eight different hapes of aircraft images are presented to illustrate the high performance of this proposed method even the target images are significantly corrupted by noise.

  • PDF

칼라 불변 기반의 특징점을 이용한 영상 모자이킹 (Image Mosaicking Using Feature Points Based on Color-invariant)

  • 권오설;이동창;이철희;하영호
    • 대한전자공학회논문지SP
    • /
    • 제46권2호
    • /
    • pp.89-98
    • /
    • 2009
  • 컴퓨터 비전 분야에서 영상 모자이킹 (Image Mosaicking)은 제한된 시야각의 카메라를 사용하여 획득한 여러 장의 중첩된 영역을 가지는 영상을 한 장의 영상으로 정합하여 나타내는 기법이다. 최근에는 연속된 영상에서 카메라의 기학학적인 움직임 때문에 발생하는 영상의 왜곡이나 밝기 차에 관계없이 정확한 정합을 수행하기 위해서 특징점을 기반으로 서술자를 구성하는 정합 방법이 많이 연구되고 있다. 그러나 대부분의 특징점 검출 알고리즘들은 영상의 밝기값 기반의 처리 과정을 수행하기 때문에 영상의 칼라 성분은 다르지만 밝기값이 비슷한 경우, 또는 동영상에서 시간의 흐름에 따라 광원이 변화하는 경우에는 광원의 영향에 따라 검출되는 특징점의 수와 각각의 지역 서술자의 특성이 변하여 정확한 대응점을 검출하는데 오류를 유발하게 된다. 이런 문제점을 해결하기 위해서 본 논문은 영상의 칼라 정보를 이용한 특징점 기반의 영상 모자이킹 방법을 제안하였다. 디지털 칼라 카메라로부터 획득한 디지털 값을 좁은 대역을 갖는 가상의 카메라 출력값으로 변환하여 물체의 분광 반사율 기반의 값으로 유도하고 이것을 광원의 변화에 불변하는 칼라 불변 값 (Color-Invariant Value)으로 정의하였다. 제안된 칼라 불변값의 유효성을 검증하기 위해서 시뮬레이션된 광원들과 Macbeth Color-Checker를 이용하여 확인하였으며, 실험결과에서 제안한 방법과 기존의 SIFT 알고리즘을 비교를 통해 제안된 방법의 정합율의 향상을 확인하였다.

지역적 매칭쌍 특성에 기반한 고해상도영상의 자동기하보정 (Automatic Registration of High Resolution Satellite Images using Local Properties of Tie Points)

  • 한유경;번영기;최재완;한동엽;김용일
    • 한국측량학회지
    • /
    • 제28권3호
    • /
    • pp.353-359
    • /
    • 2010
  • 본 논문은 Scale Invariant Feature Transform(SIFT) 기술자를 이용한 매칭 방법을 개선하여 고해상도영상에서 보다 많은 매칭쌍(tie points)을 추출함으로써 고해상도영상 자동기하보정의 결과향상을 목적으로 한다. 이를 위해 기준(reference)영상과 대상(sensed)영상의 특징점(interest points)간의 위치관계를 추가적으로 이용하여 매칭쌍을 추출하였다. SIFT 기술자를 이용하여 어핀(affine)변환계수를 추정한 후, 이를 통해 대상영상의 특징점 좌표를 기준영상 좌표체계로 변환하였다. 변환된 대상영상의 특징점과 기준영상의 특징점간의 공간거리(spatial distance)정보를 이용하여 최종적으로 매칭쌍을 추출하였다. 추출된 매칭쌍으로 piecewise linear function을 구성하여 고해상도 영상간 자동기하보정을 수행하였다. 제안한 기법을 통하여, 기존 SIFT 기법에 의해 추출한 결과에 비해 영상 전역에 걸쳐 고르게 분포된 다수의 매칭쌍을 추출할 수 있었다.

마커 없는 증강 현실 구현을 위한 물체인식 (Object Recogniton for Markerless Augmented Reality Embodiment)

  • 폴 안잔 쿠마;이형진;김영범;이슬람 모하마드 카이룰;백중환
    • 한국항행학회논문지
    • /
    • 제13권1호
    • /
    • pp.126-133
    • /
    • 2009
  • 본 논문에서는 마커 없이 증강 현실을 구현하기 위한 물체 인식 기법을 제안한다. 먼저 SIFT(Scale Invariant Feature Transform)알고리즘을 사용하여 물체 영상으로부터 특징점을 찾는데, 이러한 특징점들은 비율, 회전 또는 이동시에도 그 특징이 변하지 않는 장점이 있다. 또한 조도의 변화에도 일부는 변화지 않는 특성을 갖는다. 추출된 특징점의 독립적인 특성을 이용해 화면내의 다른 이미지의 매칭 포인트를 찾을 수 있는데, 학습된 영상과 매칭이 이루어지면, 매칭된 점을 이용해 화면내의 물체를 찾는다. 본 논문에서는 장면의 첫 프레임에서 발생하는 템플릿 이미지와의 매칭을 통해 현재의 화면에서 물체를 인식하였다. 네 종류의 물체에 대해 인식 실험을 한 결과 제안한 방법이 우수한 성능을 갖는 것을 확인하였다.

  • PDF

잡음영상의 크기와 회전불변 패턴인식을 위한 광 웨이블릿 필터 (Optical wavelet filter for Rotation and Scale-Invariant Pattern Recognition of images with Noise)

  • 이승희
    • 한국산업정보학회논문지
    • /
    • 제9권2호
    • /
    • pp.81-88
    • /
    • 2004
  • 잡음을 갖는 영상의 크기와 회전불변 패턴인식을 위한 광 웨이블릿 CHF-fSDF((wavelet circular harmonic function-filter modulation synthetic discriminant function, WCHF-fSDF) 필터를 제안하였다. 웨이블릿 CHF-fSDF 필터는 기준영상에 대하여 크기변화된 영상들을 웨이블릿 변환한 후, 이들로부터 추출한 단일 원형고조함수를 학습영상으로 사용하여 합성한다. 제안된 광 웨이블릿 CHF-fSDF 필터는 정합필터의 형태로서 전통적인 4f 광 상관기에 적용할 수 있도록 하였다. 컴퓨터 모의실험을 통하여 제안된 필터는 크기변화와 회전에 무관한 상관출력을 나타내며 특히 잡음환경하에서 유용함을 확인하였다.

  • PDF

Mobile Robot Path Finding Using Invariant Landmarks

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권3호
    • /
    • pp.178-184
    • /
    • 2016
  • This paper proposes a new path-finding scheme using viewpoint-invariant landmarks. The scheme introduces the concept of landmark detection in images captured with a vision sensor attached to a mobile robot, and provides landmark clues to determine a path. Experiment results show that the scheme efficiently detects landmarks with changes in scenes due to the robot's movement. The scheme accurately detects landmarks and reduces the overall landmark computation cost. The robot moves in the room to capture different images. It can efficiently detect landmarks in the room from different viewpoints of each scene. The outcome of the proposed scheme results in accurate and obstacle-free path estimation.