• Title/Summary/Keyword: Invariant Feature

Search Result 433, Processing Time 0.035 seconds

Fast Image Stitching For Video Stabilization Using Sift Feature Points

  • Hossain, Mostafiz Mehebuba;Lee, Hyuk-Jae;Lee, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.10
    • /
    • pp.957-966
    • /
    • 2014
  • Video Stabilization For Vehicular Applications Is An Important Method Of Removing Unwanted Shaky Motions From Unstable Videos. In This Paper, An Improved Video Stabilization Method With Image Stitching Has Been Proposed. Scale Invariant Feature Transform (Sift) Matching Is Used To Calculate The New Position Of The Points In Next Frame. Image Stitching Is Done In Every Frame To Get Stabilized Frames To Provide Stable Video As Well As A Better Understanding Of The Previous Frame'S Position And Show The Surrounding Objects Together. The Computational Complexity Of Sift (Scale-Invariant Feature Transform) Is Reduced By Reducing The Sift Descriptors Size And Resticting The Number Of Keypints To Be Extracted. Also, A Modified Matching Procedure Is Proposed To Improve The Accuracy Of The Stabilization.

A PSRI Feature Extraction and Automatic Target Recognition Using a Cooperative Network and an MLP. (Cooperative network와 MLP를 이용한 PSRI 특징추출 및 자동표적인식)

  • 전준형;김진호;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.198-207
    • /
    • 1996
  • A PSRI (position, scale, and rotation invariant ) feature extraction and automatic target recognition system using a cooperative network and an MLP is proposed. We can extract position invarient features by obtaining the target center using the projection and the moment in preprocessing stage. The scale and rotation invariant features are extracted from the contour projection of the number of edge pixels on each of the concentric circles, which is input to the cooperative network. By extracting the representative PSRI features form the features and their differentiations using max-net and min-net, we can rdduce the number of input neurons of the MLP, and make the resulted automatic target recognition system less sensitive to input variances. Experiments are conduted on various complex images which are shifted, rotated, or scaled, and the results show that the proposed system is very efficient for PSRI feature extractions and automatic target recognitions.

  • PDF

Rotation Invariant Face Detection using Haar-like Feature Variation (Haar-like Feature 변형을 이용한 기울어진 얼굴 검출)

  • Kim, Seok-Ho;Kim, Jae-Min;Cho, Seoung-Won;Lee, Gi-Seong;Chung, Sun-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.987-988
    • /
    • 2008
  • In this paper, we propose a rotation invariant face detection method using Haar-like feature variation. Previous approaches using rectangular features can be calculated very fast. But rectangular features is weak in rotated face. Rotated Haar-like features can get high accuracy, but the performance is slow because it can't use the integral image. Our method vary Haar-like features keeping rectangular. this method makes the performance a bit slow, but gives better accuracy.

  • PDF

Interest Point Detection Using Hough Transform and Invariant Patch Feature for Image Retrieval

  • Nishat, Ahmad;An, Young-Eun;Park, Jong-An
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.1
    • /
    • pp.127-135
    • /
    • 2009
  • This paper presents a new technique for corner shape based object retrieval from a database. The proposed feature matrix consists of values obtained through a neighborhood operation of detected corners. This results in a significant small size feature matrix compared to the algorithms using color features and thus is computationally very efficient. The corners have been extracted by finding the intersections of the detected lines found using Hough transform. As the affine transformations preserve the co-linearity of points on a line and their intersection properties, the resulting corner features for image retrieval are robust to affine transformations. Furthermore, the corner features are invariant to noise. It is considered that the proposed algorithm will produce good results in combination with other algorithms in a way of incremental verification for similarity.

  • PDF

Condition-invariant Place Recognition Using Deep Convolutional Auto-encoder (Deep Convolutional Auto-encoder를 이용한 환경 변화에 강인한 장소 인식)

  • Oh, Junghyun;Lee, Beomhee
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.8-13
    • /
    • 2019
  • Visual place recognition is widely researched area in robotics, as it is one of the elemental requirements for autonomous navigation, simultaneous localization and mapping for mobile robots. However, place recognition in changing environment is a challenging problem since a same place look different according to the time, weather, and seasons. This paper presents a feature extraction method using a deep convolutional auto-encoder to recognize places under severe appearance changes. Given database and query image sequences from different environments, the convolutional auto-encoder is trained to predict the images of the desired environment. The training process is performed by minimizing the loss function between the predicted image and the desired image. After finishing the training process, the encoding part of the structure transforms an input image to a low dimensional latent representation, and it can be used as a condition-invariant feature for recognizing places in changing environment. Experiments were conducted to prove the effective of the proposed method, and the results showed that our method outperformed than existing methods.

Panoramic Image Composition Algorithm through Scaling and Rotation Invariant Features (크기 및 회전 불변 특징점을 이용한 파노라마 영상 합성 알고리즘)

  • Kwon, Ki-Won;Lee, Hae-Yeoun;Oh, Duk-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.333-344
    • /
    • 2010
  • This paper addresses the way to compose paronamic images from images taken the same objects. With the spread of digital camera, the panoramic image has been studied to generate with its interest. In this paper, we propose a panoramic image generation method using scaling and rotation invariant features. First, feature points are extracted from input images and matched with a RANSAC algorithm. Then, after the perspective model is estimated, the input image is registered with this model. Since the SURF feature extraction algorithm is adapted, the proposed method is robust against geometric distortions such as scaling and rotation. Also, the improvement of computational cost is achieved. In the experiment, the SURF feature in the proposed method is compared with features from Harris corner detector or the SIFT algorithm. The proposed method is tested by generating panoramic images using $640{\times}480$ images. Results show that it takes 0.4 second in average for computation and is more efficient than other schemes.

Landmark Recognition Method based on Geometric Invariant Vectors (기하학적 불변벡터기반 랜드마크 인식방법)

  • Cha Jeong-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.3 s.35
    • /
    • pp.173-182
    • /
    • 2005
  • In this paper, we propose a landmark recognition method which is irrelevant to the camera viewpoint on the navigation for localization. Features in previous research is variable to camera viewpoint, therefore due to the wealth of information, extraction of visual landmarks for positioning is not an easy task. The proposed method in this paper, has the three following stages; first, extraction of features, second, learning and recognition, third, matching. In the feature extraction stage, we set the interest areas of the image. where we extract the corner points. And then, we extract features more accurate and resistant to noise through statistical analysis of a small eigenvalue. In learning and recognition stage, we form robust feature models by testing whether the feature model consisted of five corner points is an invariant feature irrelevant to viewpoint. In the matching stage, we reduce time complexity and find correspondence accurately by matching method using similarity evaluation function and Graham search method. In the experiments, we compare and analyse the proposed method with existing methods by using various indoor images to demonstrate the superiority of the proposed methods.

  • PDF

Moving Vehicle Segmentation from Plane Constraint

  • Kang, Dong-Joong;Ha, Jong-Eun;Kim, Jin-Young;Kim, Min-Sung;Lho, Tae-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2393-2396
    • /
    • 2005
  • We present a method to detect on-road vehicle using geometric invariant of feature points on side planes of the vehicle. The vehicles are assumed into a set of planes and the invariant from motion information of features on the plane segments the plane from the theory that a geometric invariant value defined by five points on a plane is preserved under a projective transform. Harris corners as a salient image point are used to give motion information with the normalized correlation centered at these points. We define a probabilistic criterion to test the similarity of invariant values between sequential frames. Experimental results using images of real road scenes are presented.

  • PDF

Invariant Iris Code extraction for generating cryptographic key based on Fuzzy Vault (퍼지볼트 기반의 암호 키 생성을 위한 불변 홍채코드 추출)

  • Lee, Youn-Joo;Park, Kang-Ryoung;Kim, Jai-Hie
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.321-322
    • /
    • 2006
  • In this paper, we propose a method that extracts invariant iris codes from user's iris pattern in order to apply these codes to a new cryptographic construct called fuzzy vault. The fuzzy vault, proposed by Juels and Sudan, has been used to manage cryptographic key safely by merging with biometrics. Generally, iris data has intra-variation of iris pattern according to sensed environmental changes, but cryptography requires correctness. Therefore, to combine iris data and fuzzy vault, we have to extract an invariant iris feature from iris pattern. In this paper, we obtain invariant iris codes by clustering iris features extracted by independent component analysis(ICA) transform. From experimental results, we proved that the iris codes extracted by our method are invariant to sensed environmental changes and can be used in fuzzy vault.

  • PDF

Similarity Measurement Using Open-Ball Scheme for 2D Patterns in Comparison with Moment Invariant Method (Open-Ball Scheme을 이용한 2D 패턴의 상대적 닮음 정도 측정의 Moment Invariant Method와의 비교)

  • Kim, Seong-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.76-81
    • /
    • 1999
  • The degree of relative similarity between 2D patterns is obtained using Open-Ball Scheme. Open-Ball Scheme employs a method of transforming the geometrical information on 3D objects or 2D patterns into the features to measure the relative similarity for object(patten) recognition, with invariance on scale, rotation, and translation. The feature of an object is used to obtain the relative similarity and mapped into [0, 1] the interval of real line. For decades, Moment-Invariant Method has been used as one of the excellent methods for pattern classification and object recognition. Open-Ball Scheme uses the geometrical structure of patterns while Moment Invariant Method uses the statistical characteristics. Open-Ball Scheme is compared to Moment Invariant Method with respect to the way that it interprets two-dimensional patten classification, especially the paradigms are compared by the degree of closeness to human's intuitive understanding. Finally the effectiveness of the proposed Open-Ball Scheme is illustrated through simulations.

  • PDF