생체인식은 개인의 유일하면서 변화하지 않는 생체의 특징을 이용하여 개인의 본인 여부를 판별하는 방법으로써 널리 사용되어 왔다. 생체정보의 고유 불변한 특징을 저장하는 것은 개인정보의 노출에 따른 보안상의 문제점을 갖고 있으며 이를 해결하기 위해 제안된 방법이 가변생체인식 (cancelable biometrics)이다. 가변생체인식은 생체정보의 도난이나 도용으로부터 강인하며 재생성 가능한 생체템플릿을 제공하는 생체 인식방법이다. 본 논문에서는 변환 생체인식의 한 가지 방법으로써 얼굴 생체정보의 새로운 이진화 방법을 제안한다. 얼굴 생체정보의 이진화를 위한 특징추출은 얼굴정보의 부분적 변화에 강인한 영역기반 주성분 분석(Subpattern-based PCA)을 이용하였으며 이로부터 얻어진 특징을 보조정보에 기반한 방법으로 이진화 하였다. 획득된 이진비트열은 영역기반 주성분 분석의 사용으로 여러 얼굴 영역의 고려와 함께, 선택된 주성분 개수만큼의 계수들에 대한 이진화 값들을 포함하고 있다. 이러한 서로 다른 얼굴영역의 여러 주성분들에서 추출된 이진비트열중 구분력이 좋은 비트 값들을 선택하였으며, 선택된 비트 값들은 이진화를 위한 보조 정보가 노출된 경우에서도 원 얼굴특징벡터보다 향상된 인식성능을 보여준다.
멀티미디어 기술과 콘텐츠의 발달로 3차원 데이터의 사용 범위가 넓어지고, 이를 보다 효율적으로 관리하고 검색하기 위한 시스템이 필요하다. 본 논문은 효율적인 3차원 모델의 형상 기반 검색을 하기위해 모델의 특징을 추출하는 단면 형상 영상 방법을 제안한다. 3차원 모델의 특징 기술자는 모델에 대한 위치, 회전, 크기에 불변해야 하므로 모델을 정규화 시키는 작업이 필요하다. 본 논문에서는 주성분 분석 방법을 이용하여 정규화하였다. 제안한 알고리즘은 주성분 분석을 통해 각 축의 방향 성분을 찾고, 각 축에 직교하는 n 개의 평면을 생성한다. 이 평면은 각 축의 방향과 직교 성분을 갖으며 단면 형상 영상을 구하는데 사용된다. 단면 형상 영상은 3차원 모델과 각 평면이 교차해서 생기는 2차원 평면 영상이다. 제안한 3차원 모델의 특징 기술자는 단면 형상 영상의 중심점과 2차원 형상(shape)을 이루는 직선까지의 유클리디안 거리(distance)값들의 분포도이다. 검색 성능 평가는 MPEG-7에서 제시한 표준 평가 방법인 표준화된 수정 검색 순위의 평균(ANMRR)을 이용하였고 제안한 방법의 우수성을 실험 결과를 통해 입증하였다.
영상정합은 다시기 및 다중센서 고해상도 위성영상을 효과적으로 활용하기 위해 필수적으로 선행되는 중요한 과정이다. 널리 각광받고 있는 딥러닝 기법은 위성영상에서 복잡하고 세밀한 특징을 추출하여 영상 간 빠르고 정확한 유사도 판별에 사용될 수 있음에도 불구하고, 학습자료의 양과 질이 결과에 영향을 미치는 딥러닝 모델의 한계와 고해상도 위성영상 기반 학습자료 구축의 어려움에 따라 고해상도 위성영상의 정합에는 제한적으로 적용되어 왔다. 이에 본 연구는 영상정합에서 가장 많은 시간을 소요하는 정합쌍 추출 과정에서 딥러닝 기반 기법의 적용성을 확인하기 위하여, 편향성이 존재하는 고해상도 위성영상 데이터베이스로부터 딥러닝 영상매칭 학습자료를 구축하고 학습자료의 구성이 정합쌍 추출 정확도에 미치는 영향을 분석하였다. 학습자료는 12장의 다시기 및 다중센서 고해상도 위성영상에 대하여 격자 기반의 Scale Invariant Feature Transform(SIFT) 알고리즘을 이용하여 추출한 영상쌍에 참과 거짓의 레이블(label)을 할당한 정합쌍과 오정합쌍의 집합으로 구축되도록 하였다. 구축된 학습자료로부터 정합쌍 추출을 위해 제안된 Siamese convolutional neural network (SCNN) 모델은 동일한 두 개의 합성곱 신경망 구조에 한 쌍을 이루는 두 영상을 하나씩 통과시킴으로써 학습을 진행하고 추출된 특징의 비교를 통해 유사도를 판별한다. 본 연구를 통해 고해상도 위성영상 데이터 베이스로부터 취득된 자료를 딥러닝 학습자료로 활용 가능하며 이종센서 영상을 적절히 조합하여 영상매칭 과정의 효율을 높일 수 있음을 확인하였다. 다중센서 고해상도 위성영상을 활용한 딥러닝 기반 영상매칭 기법은 안정적인 성능을 바탕으로 기존 수작업 기반의 특징 추출 방법을 대체하고, 나아가 통합적인 딥러닝 기반 영상정합 프레임워크로 발전될 것으로 기대한다.
특징점은 주로 높이의 변화가 있는 위치에 존재하여 DSM 생성에 의미 있는 화소일 수 있으며, 정확하고 신뢰할 만한 정합 결과를 도출하는 중요한 역할을 한다. 이러한 특징점을 위성영상 내의 건물에서 추출하고 스테레오 영상 간의 정합을 수행하기 위해 사용자의 주관적인 분석을 통한 방법이 주로 쓰여 왔으나 경제적 및 시간적 비용이 드는 단점이 있다. 이러한 부분을 보완하기 위해 본 연구에서는 건물의 높이 정보를 추출하기 위해서 Harris-affine 특징점 추출기법과 SIFT 서술자를 사용한 스테레오 위성영상의 정합점 추출방법을 제시하였다. Harris-affine 추출기법으로 건물에 존재하는 특징점을 추출하고, 스케일 등의 영향이 적은 SIFT 서술자를 활용하여 효과적으로 정합점을 추출하였다. 또한, 탐색범위를 사용하고 영상 내 정합쌍의 각도를 고려하여 좀 더 효과적인 정합점 추출 방법을 제시하였다. 제안방법으로 추출된 정합점을 사용하여 영상 내에 존재하는 건물의 높이 정보를 실제로 분석하여 제안 방법이 수동 방법과 비교하여 2m 미만의 RMSE 값을 가지는 것을 확인하였다.
조명 환경에 의해 발생하는 강한 그림자 영역은 반사 영상을 이용하는 얼굴인식시스템의 성능을 저하시키는 주요인으로써, 인식률을 향상시키기 위해서는 강한 그림자 영역과 얼굴의 특징 영역을 구분해 낼 필요가 있다. 한편 Bilateral 필터는 영상 화소 값의 비선형적인 조합을 사용하여 경계영역을 보존하면서도, 전체 영상을 평활화할 수 있는 특성을 갖는다. 따라서 Bilateral 필터의 특성은 레티넥스 기반 조명 정규화 방법에서의 조명을 추정하는 과정에 사용되는 평활화 필터에 적합하다. 이에 본 논문에서는 강한 그림자 영역을 효과적으로 제거하기 위한 Bilateral 필터 기반의 새로운 조명 정규화 방법을 제안한다. Bilateral 필터의 계수는 화소 간 근접성(proximity)과 불연속성(discontinuity)의 곱으로 설계하여, 추정된 조명 영상에서 강한 그림자 영역이 비교적 정확하게 보존되도록 한다. 제안된 방법의 성능은 PCA(Principle Component Analysis)를 이용하여 인식률을 측정하고, 두 가지 데이터베이스에 대해 기존의 조명 정규화 방법들과 비교하여 평가하였다.
사람 검출은 정지된 영상 혹은 동영상으로부터 사람의 움직임이나 자세를 추정하고, 사람이 찾아질 경우 영상 내 사람의 좌표, 동작 인식, 보안관련 인증 등을 알아내는 기술로 정의된다. 이러한 사람 검출은 다른 객체의 검출이나 사람과 컴퓨터와의 상호작용, 동작 인식 등의 기초 기술로서 해당 시스템의 성능에 영향을 미치는 매우 중요한 변수 중에 하나이다. 그러나 영상 내의 사람은 움직임, 자세, 크기, 빛의 방향 및 밝기, 다른 객체와의 중복 등의 환경적 변화로 인해 사람 모양이 다양해지므로 정확하고 빠른 검출이 어렵다. 따라서 본 논문에서는 피셔의 선형 판별 분석을 이용하여 몇 가지 환경적 조건을 극복한 정확하고 빠른 사람 검출 방법을 제안한다. 제안된 방법은 사람 움직임 및 자세와 배경에 무관하게 빠른 시간 안에 사람을 검출하는 것이 가능하다. 이를 위해 계층적인 방법으로 사람 검출을 수행하며, 휴리스틱한 방법, 피셔의 판별 분석을 이용하여 사람 검출을 수행하고, 검색 영역의 축소와 선형 결정의 계산 시간의 단축으로 검출 응답 시간을 빠르게 하였다. 추출된 사람 영상에서 사람의 자세를 추정하고 사람의 영역을 검출함으로써 사람 정보의 사용에 있어 보다 많은 정보를 추출할 수 있도록 하였다.
본 논문에서는 인메모리(In-memory) 병렬 분산 처리 시스템 Apache Spark(이하 Spark)를 활용하여 사용자에게 실시간 측위 정보를 제공할 수 있는 영상 기반 실내 위치인식 시스템을 제안한다. 제안하는 시스템에서는 사용자에게 실시간 측위 정보를 제공하기 위해서, Spark를 이용한 영상 특징점 추출 알고리즘의 병렬 분산화를 통해 알고리즘 연산 시간을 단축시킨다. 하지만 기존의 Spark 플랫폼에서는 영상 처리를 위한 인터페이스가 존재하지 않아, 영상 처리와 관련된 연산을 수행하는 것이 불가능하였다. 이에 본 논문에서는 Spark 영상 입출력 인터페이스를 구현하여 측위 연산을 위한 영상 처리를 Spark에서 수행 가능하게 하였다. 또한 무손실 압축(lossless compression)기법을 이용하여 특징점 기술자(descriptor)를 압축된 형태로 데이터베이스에 저장하여, 대용량의 실내 지도 데이터를 효율적으로 저장 및 관리하는 방법을 소개한다. 측위 실험은 실제 실내 환경에서 수행하였으며, 싱글 코어(Single-core) 시스템과의 성능 비교를 통해 제안하는 시스템이 최대 약 3.6배 단축된 시간으로 사용자에게 측위 정보를 제공 할 수 있다는 것을 입증하였다.
본 논문은 실내공간의 다시점 정지 영상을 서로 다른 방식으로 획득하고, 이 데이터로부터 해당 3차원 공간에 대한 기하학적인 형상정보를 담은 두 종류의 복원 결과를 비교분석 한다. 공간 내 한 평면 복원을 목표로, 첫 번째 데이터 군 확보에는 정규격자경로를 따라 정지 영상을 얻는 수동형 영상 획득 방식을 활용하였다. 두 번째 데이터 군 확보에는 한 평면의 제한된 각도 내 3차원 정보를 얻는 레이저 스캐너의 스캐닝 방식을 정지 영상 획득 방식에 응용하였다. SIFT알고리즘을 이용해 획득된 정지 영상 데이터 간의 특징점을 검출하였고 이를 기반으로 3차원 포인트 클라우드 데이터를 생성하였다. 복원된 3차원 공간정보는 생성된 포인트 클라우드의 이미지와 개수 및 평균 밀집도, 수행 시간을 통해 표현했으며 보다 정확한 실내공간의 3차원 복원에는 카메라로 획득하는 정지 영상 데이터만이 아닌 추가적인 센서를 사용한 데이터의 확보가 필요하다는 점을 확인하였다.
본 연구에서는 대표적인 영상 정합기법 중 하나인 SIFT 기법을 이용하여, 고해상도의 초분광 스트립 영상에 대하여 높은 품질의 모자이크 영상을 생성하고자 하였다. 이를 위해, 항공사진 촬영당시의 GPS/INS 정보를 이용하여 초기 기하보정된 AISA Eagle 초분광 영상에 대하여 실험을 진행하였다. 세 개의 스트립으로 구성된 초분광 영상 간의 정합쌍을 추출하여 변환모델식을 구성하였고, 모자이크 영상을 생성하였다. 특히, 고품질의 초분광 모자이크 영상을 생성하기 위하여, 초분광 영상 내의 대표 밴드를 선정하고, 이를 이용한 영상 정합기법의 결과들을 분석하여 최적의 대표 밴드를 결정하고자 하였다. 본 연구를 통해 생성된 모자이크 영상의 위치 정확도를 비교 평가하기 위해서, GPS/INS 시스템으로 기하보정된 AISA Eagle 초분광 영상을 이용하여 생성한 모자이크 영상과의 시각적 비교 평가를 수행하였으며, 본 연구에서 수행한 방법들의 효용성을 분석하였다.
컴퓨터 및 통신기술의 급속한 발전으로 인해 동영상 정보는 인터넷 및 사회전반의 다양한 분야에서 활용되고, 그 수가 기하급수적으로 증가되고 있다. 동영상 정보 분석 시스템은 기본적으로 텍스트를 기반으로하기 때문에, 동영상 정보가 가지는 애매성을 표현하기 곤란하며, 주석 작성에 따르는 과다한 작업부담 및 객관성 결여 등의 문제점을 가지고 있다. 본 논문에서는 대용량의 동영상 정보를 효율적으로 분석 하기 위해 있는 동영상 이미지의 분할영역에서 색상정보와 모양정보를 이용한 방법을 제안하고자 한다. 분할영역은 영역성장과 결합 방법을 사용한다. 색상정보를 추출하기 위해서는 기존의 RGB 방식에서 HSI방식으로 색상변환 하여 대표색상과 매칭되는 특징 정보를 사용한다. 그리고 모양정보는 물체의 윤곽선에 해당하는 화소들만을 대상으로 연산을 수행하는 향상된 불변 모멘트(Improved Moment Invariants : IMI)를 이용한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.