• Title/Summary/Keyword: Inundation trace

Search Result 21, Processing Time 0.03 seconds

A Study on Making Map of Flood Using Digital Elevation Model (DEM) (수치표고모형 (DEM)을 이용한 침수재해 지도작성에 관한 연구)

  • Lim, Hyun Taek;Kim, Jae Hwi;Lee, Hak Beom;Park, Sung Yong;Kim, Yong Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • Recent floodplain data are important for river master plan, storm and flood damage reduction comprehensive plan and pre-disaster impact assessment. Hazard map, base of floodplain data, is being emphasized as important method of non-structural flood prevention and consist of inundation trace map, inundation expected map and hazard information map. Inundation trace map describes distribution of area that damaged from typhoons, heavy rain and tsunamis and includes identified flood level, flood depth and flood time from flooding area. However due to lack of these data by local government, which are foundational and supposed to be well prepared nationwide, having hard time for making inundation trace map or hazard information map. To overcome this problem, time consumption and budget reduction is required through various research. From this study, DEM (Digital Elevation Model) from image material from UAVS (Unmanned Aerial Vehicle System) and numeric geographic map from National Geographic Information Institute are used for calculating flooding damaged area and compared with inundation trace map. As results, inundation trace map DEM based on image material from UAVS had better accuracy than that used DEM based on numeric geographic map. And making hazard map could be easier and more accurate by utilizing image material from UAVS than before.

Accuracy Improvement for Building Inundation Trace Map using Accurate DEM Data and Flood Damage Information (정밀지형자료와 과거 침수피해정보를 활용한 침수흔적도 구축 정확도 개선)

  • Goo, Sin-Hoi;Kim, Seong-Sam;Park, Young-Jin;Choi, Jae-Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.91-99
    • /
    • 2011
  • With increasing astronomically damage costs caused by frequent and large-sized flood, a hazard map containing comprehensive analysis results such as inundation trace investigation, flood possibility analysis, and evacuation plan establishment for flooded regions is a fundamental measure of non-structural flood prevention. Though an inundation trace map containing flood investigation results occurred by typhoon, rainfall and tsunami is a basic hazard map having close relationship with a flood possibility map as well as a hazard information map, it is often impossible to be produced because of financial deficiency, time delay of investigation, and the lack of maintenance for flood traces. Therefore, this study proposes the accuracy enhancement procedure of inundation trace map with flood damage information and three-dimensional Digital Elevation Model (DEM) for the past frequent flooded regions according to a guideline for inundation trace map of National Emergency Management Agency (NEMA).

Analysis of the Tsunami Inundation Trace and it's Expectation Area in Coast Using GIS (GIS를 이용한 지진해일시 연안의 침수 흔적 및 예상 지역 분석)

  • Lee Hyung-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.175-182
    • /
    • 2006
  • The efficient management for minimum losses and demage precautions of fragile region against coastal disasters such as seismic waves and seawater overflows is proceeding continually. This study is to analyze inundation trace and extract expected damage areas with historic records of tsunami using Geographic Information System. Creating a digital elevation model of the Mangsang and the Nobong region in the east coast, we marked inundation record of tsunami and forecasted the flood area with a seismic wave height between 3 m and 5 m. The inundation trace layers and the expected damage areas on the cadastral map layer were superimposed individually. Consequently, the range and lot numbers of inundation expected area were calculated and inundation areas of 5 m tsunami were increased by 2.8 times than 3 m tsunami in case of subject regions. Analyzed results are expected to use evacuation work in case of seismic waves and to predict the compensation of the damaged area. And this study is expected to use suitable countermeasure for prevention from natural disasters.

Analysis of Flood Inundation Area using HEC-RAS/GIS (HEC-RAS/GIS를 이용한 홍수 범람지역 분석)

  • An, Seung Seop;Lee, Jeung Seok;Kim, Jong Ho
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • The purpose of the study was to construct a forecast system of flood inundation area at natural stream channels. The study built the system to interpret the flood inundation area in four stages ; constructing topography data around the stream channel, interpreting flood discharge, interpreting flood elevation in the stream channel, and interpreting the flood inundation and mapping. According to the result of the analysis, as for the characteristic of flood inundation around the area within the purview of this study, although there were areas where flood inundation over a bank caused a flooded area, the failure of the internal drainage in the ground lower than flood elevation caused more serious problems. Rather than the existing method where only the estimated flood elevation data is used based on the hydrographical stream channel trace model(such as the HEC-RAS model) to establish the flood inundation area, if the procedure introduced in this study was applied to interpret the floodplain, actual flood inundation area could be visibly confirmed.

A Study on Flood Area Typology Using the Inundation Trace Map - A Case Study of Busan Metropolitan City - (침수흔적도를 활용한 침수지역 유형화에 관한 연구 -부산광역시를 사례로-)

  • Yoo, Chang;Hong, Soon Heon;Choi, Hyun;Nam, Kwang Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.5
    • /
    • pp.393-400
    • /
    • 2013
  • Recently, expected casuality or property damage, such as flood damage, environmental destruction, etc, is increased because of the local heavy rain or flood by climatic changes. Especially, there are lots of property damages caused by increase of flood frequency and expansion of flood area because impervious rate is increased by urban sprawling development. Therefore, this research intends to analyze reasons of flood damage by each form and suggest protective measures through the typology of flood area for Haeundae-gu, Suyoung-gu, Saha-gu in Busan Metropolitan City with Busan's inundation trace map which has made from 2009. To achieve them, flood area was divided into water flooding type, river flooding type and seawater flooding type. And, protective measures focusing on previous prevention gave the relationship by dividing into managing system aspect, infrastructure building aspect and system aspect, so it approached flooding problems more objectively and scientifically. And, this research intends to suggest vitalizing measures for the utilization of inundation trace map in the future.

A Study on the Watershed Analysis of the Expected Flood Inundation Area in South Han River (남한강 유역의 침수예상지역에 대한 홍수범람분석에 관한 연구)

  • HONG, Sung-Soo;JUNG, Da-Som;HWANG, Eui-Ho;CHAE, Hyo-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.1
    • /
    • pp.106-119
    • /
    • 2016
  • Flood risk map, flood damage map, disaster information map, inundation trace map are involved with the cartographic analysis of flood inundation based on prevention, preparation, restoration, response from natural disasters such as flood, flooding, etc. In this study, the analysis for channel and basin characteristics Chungju dam to Paldang dam of South han river after four river project. Flood scenario is selected to take advantage of design flood level of schematic design for river. Flood inundation of one dimensional non-uniform flow by using HEC-RAS with basin characteristics is accomplished and two dimensional unsteady flow was interpreted by using FLUMEN. Frequency analysis is carried out about each abundance of South han river for 100 year period, 200 year period and 500 year period. Flooding disaster area of 100 year period on 0.5m damage functions is 2378.8ha, 200 year period on 0.5m damage functions is 3155.2ha, 500 year period on 0.5m damage functions is 3995.3ha respectively. It will be significant data for decision making to establish inundation trace map for providing basic plan for river maintenance, land use plan, flood protection plan, application plan and getting information of flood expectation area.

Study on Application of Diffusion Wave Inundation Analysis Model Linked with GIS (GIS와 연계한 확산파 침수해석 모형의 적용에 대한 연구)

  • Cho, Wan-Hee;Han, Kun-Yeon;Choi, Seung-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.88-100
    • /
    • 2009
  • An inundation analysis was performed on Hwapocheon, one of the tributaries of Nakdong River, which was inundated by heavy rain in August, 2002 with overtopping and levee break. The results of the developed model, 2D diffusion wave inundation analysis model, was compared with inundation trace map as well as inundation depth in terms of time and maximum inundated area calculated from FLUMEN model for the assessment of model applicability. The results from the developed model showed high fitness of 88.61% in comparison with observed data. Also maximum inundated area and spatial distribution of inundation zone were also found to be consistent with the results of FLUMEN model. Therefore, inundation zone and maximum inundation area calculated over a period of time by adopting 2D diffusion wave inundation analysis model can be used as a database for identifying high risk areas of inundation and establishing flood damage reduction measures.

  • PDF

Flood analysis for agriculture area using SWMM model: case study on Sindae drainage basin

  • Inhyeok Song;Hyunuk An;Mikyoung Choi;Heesung Lim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.799-808
    • /
    • 2023
  • Globally, abnormal climate phenomena have led to an increase in rainfall intensity, consequently causing a rise in flooding-related damages. Agricultural areas, in particular, experience significant annual losses every year due to a lack of research on flooding in these regions. This study presents a comprehensive analysis of the flood event that occurred on July 16, 2017, in the agricultural area situated in Sindaedong, Heungdeok-gu, Cheongju-si. To achieve this, the EPA (United States Environmental Protection Agency) Storm Water Management Model (SWMM) was employed to generate runoff data by rainfall information. The produced runoff data facilitated the identification of flood occurrence points, and the analysis results exhibited a strong correlation with inundation trace maps provided by the Ministry of the Interior and Safety (MOIS). The detailed output of the SWMM model enabled the extraction of time-specific runoff information at each inundation point, allowing for a detailed understanding of the inundation status in the agricultural area over different time frames. This research underscores the significance of utilizing the SWMM model to simulate inundation in agricultural areas, thereby validating the efficacy of flood alerts and risk management plans. In particular, the integration of rainfall data and the SWMM model in flood prediction methodologies is expected to enhance the formulation of preventative measures and response strategies against flood damages in agricultural areas.

Computation of Criterion Rainfall for Urban Flood by Logistic Regression (로지스틱 회귀에 의한 도시 침수발생의 한계강우량 산정)

  • Kim, Hyun Il;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.713-723
    • /
    • 2019
  • Due to the climate change and various rainfall pattern, it is difficult to estimate a rainfall criterion which cause inundation for urban drainage districts. It is necessary to examine the result of inundation analysis by considering the detailed topography of the watershed, drainage system, and various rainfall scenarios. In this study, various rainfall scenarios were considered with the probabilistic rainfall and Huff's time distribution method in order to identify the rainfall characteristics affecting the inundation of the Hyoja drainage basin. Flood analysis was performed with SWMM and two-dimensional inundation analysis model and the parameters of SWMM were optimized with flood trace map and GA (Genetic Algorithm). By linking SWMM and two-dimensional flood analysis model, the fitness ratio between the existing flood trace and simulated inundation map turned out to be 73.6 %. The occurrence of inundation according to each rainfall scenario was identified, and the rainfall criterion could be estimated through the logistic regression method. By reflecting the results of one/two dimensional flood analysis, and AWS/ASOS data during 2010~2018, the rainfall criteria for inundation occurrence were estimated as 72.04 mm, 146.83 mm, 203.06 mm in 1, 2 and 3 hr of rainfall duration repectively. The rainfall criterion could be re-estimated through input of continuously observed rainfall data. The methodology presented in this study is expected to provide a quantitative rainfall criterion for urban drainage area, and the basic data for flood warning and evacuation plan.

A Study of Informationization Technique for Detecting Flood Inundation Area Using RS (RS를 이용한 홍수범람지역 탐지 정보화 기법 연구)

  • Shin, Hyung-Jin;Chae, Hyo-Sok;Hwang, Eui-Ho;Park, Jae-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.172-183
    • /
    • 2012
  • In 2011, floods were at the worst stage of devastation in Chao Phraya river basin of Thailand. The purpose of this study is to trace the flood inundation area around Chao Phraya river basin by using Terra MODIS image because it has the ability of spatiotemporal dynamics. The MODIS indices, which included the enhanced vegetation index(EVI), land surface water index(LSWI), and the difference in the values of EVI and LSWI(DVEL), were extracted from MODIS product MOD09 8-day composite datasets with a spatial resolution of 500m from Jul. 29, 2011 to Jan. 09, 2012. We found that combined application of EVI, LSWI, and DVEL was suitable for monitoring flood inundation. For the extracted flood inundation area and water-related area. The result can be used to acquire the flood inundation data scattered and demonstrate the potential for the use of MODIS data for temporal and spatial detection of flood effects.