• Title/Summary/Keyword: Intrusive

Search Result 338, Processing Time 0.022 seconds

Influence of complex geological structure on horizontal well productivity of coalbed methane

  • Qin, Bing;Shi, Zhan-Shan;Sun, Wei-Ji;Liang, Bing;Hao, Jian-Feng
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.145-154
    • /
    • 2022
  • Complex geological conditions have a great influence on the mining of coalbed methane (CBM), which affects the extraction efficiency of CBM. This investigation analyzed the complicated geological conditions in the Liujia CBM block of Fuxin. A geological model of heterogeneities CBM reservoirs was established to study the influence of strike direction of igneous rocks and fault structures on horizontal well layout. Subsequently, the dual-porosity and dual-permeability mathematical model was established, which considers the dynamic changes of porosity and permeability caused by gas adsorption, desorption, pressure change. The results show that the production curve is in good agreement with the actual by considering gas seepage in matrix pores in the model. Complicated geological structures affect the pressure expansion of horizontal wells, especially, the closer to the fault structure, the more significant the effect, the slower the pressure drop, and the smaller the desorption area. When the wellbore extends to the fault, the pressure expansion is blocked by the fault and the productivity is reduced. In the study area, the optimal distance to the fault is 70 m. When the horizontal wellbore is perpendicular to the direction of coal seam igneous rock, the productivity is higher than that of parallel igneous rock, and the horizontal well bore should be perpendicular to the cleat direction. However, the well length is limited due to the dense distribution of igneous rocks in the Liujia CBM block. Therefore, the horizontal well pumping in the study area should be arranged along the direction of igneous rock and parallel plane cleats. It is found that the larger the area surrounded by igneous rock, the more favorable the productivity. In summary, the reasonable layout of horizontal wells should make full use of the advantages of igneous rock, faults and other complex geological conditions to achieve the goal of high and stable production.

Diverse modeling techniques, parameters, and assumptions for nonlinear dynamic analysis of typical concrete bridges with different pier-to-deck connections: which to use and why

  • Morkos, B.N.;Farag, M.M.N.;Salem, S.;Mehanny, S.S.F.;Bakhoum, M.M.
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.245-261
    • /
    • 2022
  • Key questions to researchers interested in nonlinear analysis of skeletal structures are whether the distributed plasticity approach - albeit computationally demanding - is more reliable than the concentrated plasticity to adequately capture the extent and severity of the inelastic response, and whether force-based formulation is more efficient than displacement-based formulation without compromising accuracy. The present research focusing on performance-based seismic response of mid-span concrete bridges provides a pilot holistic investigation opting for some hands-on answers. OpenSees software is considered adopting different modeling techniques, viz. distributed plasticity (through either displacement-based or force-based elements) and concentrated plasticity via beam-with-hinges elements. The pros and cons of each are discussed based on nonlinear pushover analysis results, and fragility curves generated for various performance levels relying on incremental dynamic analyses under real earthquake records. Among prime conclusions, distributed plasticity modeling albeit inherently not relying on prior knowledge of plastic hinge length still somewhat depends on such information to ensure accurate results. For instance, displacement-based and force-based approaches secure optimal accuracy when dividing, for the former, the member into sub-elements, and satisfying, for the latter, a distance between any two consecutive integration points, close to the expected plastic hinge length. On the other hand, using beam-with-hinges elements is computationally more efficient relative to the distributed plasticity, yet with acceptable accuracy provided the user has prior reasonable estimate of the anticipated plastic hinge length. Furthermore, when intrusive performance levels (viz. life safety or collapse) are of concern, concentrated plasticity via beam-with-hinges ensures conservative predicted capacity of investigated bridge systems.

The Proposition of the Checklist and the Case Study of Art Education Environment for Usability and Safety - Focusing on Domestic and International Public Elementary Schools - (사용성과 안전성을 고려한 초등학교 미술교육환경 체크리스트 제안 및 사례연구 - 국내외 공립 초등학교 중심으로 -)

  • Lee, Na Young;Paik, Jin Kyung
    • Korea Science and Art Forum
    • /
    • v.16
    • /
    • pp.299-310
    • /
    • 2014
  • The purpose of this research propose the improvement of the visual arts educational environment according to the previous studies that is visual arts education have effect on the students' creativity and their Psychological Aspects. In addition, This study provide the preceding material in terms of the future quality of the environment and curriculum for public schools and indicate the advantages and disadvantages of each design space as examining what is needed aspect of the art connectivity. Research method is to investigate the domestic and International public school's visual arts education environment aspects of the facility and space status for safety and activity. As well, method is that it will find out how the program is being conducted in any part of the local culture. Art Education is not the non-intrusive training, but the series of processes going to work together and solve problems through participation of the creative experience based on the art motif. Therefore, it will be a well-supported guideline to establish the art educational environment.

Construction Safety Training Methods and their Evaluation Approaches: A Systematic Literature Review

  • Ojha, Amit;Seagers, Jonathan;Shayesteh, Shayan;Habibnezhad, Mahmoud;Jebelli, Houtan
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.188-197
    • /
    • 2020
  • Due to hazardous working environments at complex, unstructured, and dynamic construction sites, workers frequently face potential safety and health risks throughout the construction process. In this regard, addressing safety challenges remains one of the top priorities. Construction workers' ability to identify and assess risks is acquired through training, which is one of the primary key factors to determine their safety and wellbeing in hazardous working environments. As such, safety managers constantly focus on the effectiveness of the training materials provided to the workers. However, the construction workers are considerably at greater risk of injuries and fatalities compared to the workers in other industries. In this regard, further studies are required to build up a body of knowledge on the conventional safety training approaches as well as their evaluation techniques in order to boost up the adoption by the practitioners in a widespread manner. This paper provides a systematic review of the current safety training approaches and the various techniques for measuring their effectiveness. The attributes of the current safety training methods for construction workers and their evaluation techniques are identified and analyzed. Results indicated that: 1) immersive environment-based training methods are effective than the traditional safety training methods; 2) this effectiveness can be empirically supported by evaluation strategies, but the current techniques are subjective, intrusive, and error-prone. This research offers fresh opportunities to investigate the training strategies by objectively monitoring the physiological responses of construction crews. The results of this study can be used by researchers and practitioners to identify and determine optimal safety training programs that could potentially become ubiquitous in the construction industry.

  • PDF

Geology and U-Pb Age in the Eastern Part of Yeongdeok-gun, Gyeongsangbuk-do, Korea (경북 영덕군 동부 일원의 지질과 U-Pb 연령)

  • Kang, Hee-Cheol;Cheon, Youngbeom;Ha, Sangmin;Seo, Kyunghan;Kim, Jong-Sun;Shin, Hyeon Cho;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.153-171
    • /
    • 2018
  • This study focuses on the investigation of geologic distribution and stratigraphy in the eastern part of Yeongdeok-gun, based on Lidar imaging, detailed field survey, microscopic observations, SHRIMP and LA-MC-ICPMS U-Pb age dating, and a new geological map has been created. The stratigraphy of the study area is composed of the Paleoproterozoic metamorphic rocks consisting of banded gneisses of sedimentary origin and schists ($1841.5{\pm}9.6Ma$) of volcanic origin, Triassic Yeongdeok plutonic rocks ($249.1{\pm}2.3Ma$) and Pinkish granites ($242.4{\pm}2.4Ma$), Jurassic Changpo plutonic rocks ($193.2{\pm}1.9Ma{\sim}188.8{\pm}2.0Ma$) and Fine-grained granites ($192.9{\pm}1.7Ma$), Formations [Gyeongjeongdong Fm, Ullyeonsan Fm. (~108 Ma), Donghwachi Fm.] of the Early Cretaceous Gyeongsang Supergroup and acidic volcanic rocks and dykes erupted and intruded in the Late Cretaceous, Miocene intrusive rhyolitic tuffs ($23.1{\pm}0.2Ma{\sim}22.97{\pm}0.13Ma$) and sedimentary rocks of the Yeonghae basin, and the Quaternary sediments. The Triassic Pinkish granites, Jurassic Changpo plutonic rocks and Fine-grained granites are newly defined plutonic rocks in this study. Miocene intrusive rhyolitic tuffs bounded by the Yangsan Fault, which was first discovered in the north of Pohang city, are believed to play an important role in the understanding of the Miocene volcanic activity and the crustal deformation history on the Korean Peninsula. It is confirmed that The NNE-SSW-striking Yangsan Fault penetrating the central part of the study area and branch faults are predominant in the dextral movement and cutting all strata except the Quaternary sediments.

EARLY HISTO(PATHO)LOGIC CHANGES AND RECOVERY OF TOOTH AND PERIODONTAL TISSUE IN INTRUSION OF PREMOLAR ON YOUNG ADULT DOGS (유성견의 소구치 압하시 초기 치아 및 치주 조직의 조직학적 변화와 재생에 관한 연구)

  • Ahn, Byeong-Kyo;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.28 no.2 s.67
    • /
    • pp.297-310
    • /
    • 1998
  • The purpose of this study was to investigate the initial tissue change, to repair on the teeth & surrounding tissue under the intrusive orthodontic forces by use of elastic chain, through the microscopic findings. For this study, three young adult mongrel dogs were used, and were divied into three group : the control group was deliveried only casting crown and the experimental group 1 was equipped with energy chain during 1 week and experimental 2 group was deliveried using energy chain during 1 week and 3 weeks observation. All experimental groups and control groups were sacrificed to make the samples for microscopic findings on premolar teeth. All samples were examed and compared the histologic changes through the microscopic with H-E stain. The obtained results were as follows. 1. In hematoxylin-eosin stain of the control group, the periodontal ligament was constant width from apical third to cervical third of the root, and the periodontal fiber arrangement was horizontal or oblique in cervical third, oblique in middle and apical third of the root. 2. In Masson Trichrome stain of the control group, osteoblast and osteoclast appeared in cervical third of root, and bone resorption and new bone formation was observed in middle and apical third of the root. 3. In experimental 1, osteoclasts were increased highly, and hyperemia of blood vessels and new bone formation and bone resorption by reversal line in apical third of the root were seen. PDL width was increased apprarently from crest to apex of the root and more in apical third. 4. In experimental 2, osteoclasts and hyperemia of blood vessels were more increased than control material in apical third of the root. PDL width was increased more than control group in root apex, and was seen less than experimental 1. PDL arrangement was similar to experimental 1 and was mixed only in root apex. Therefore, in premolar intrusion of the young adult dog, there were increased osteoclast, hyperemia and dilation of blood vessel, resorption of alveolar bone and cementum and different arrangement of PDL in initial tissue change. There was not observed complete repair after remove intrusive force.

  • PDF

Adakitic Signatures of the Jindong Granitoids (진동화강암체의 아다카이틱한 특성)

  • Wee, Soo-Meen;Kim, Yun-Ji;Choi, Seon-Gyu;Park, Jung-Woo;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.223-236
    • /
    • 2007
  • The eastern extension of the Cordilleran-type orogenic belt continues from southeastern China to the Chukot Peninsula through the Korean Peninsula. The Gyeongsang basin, located in the southeastern part of the Korean Peninsula and the Inner Zone of southwest Japan are characterized by extensive distribution of Cretaceous to Tertiary I-type calc-alkaline series of intrusive rocks. These intrusive rocks are possibly the result of intensive magmatism which occurred in response to the subduction of the Izanagi Plate beneath the northeastern part of the Eurasian Plate. The Jindong granitoids within the Gyeongsang basin are reported to be adakites, whose signatures are high $SiO_2,\;Al_2O_3$, Sr, Sr/Y La/Yb and, low Y and Yb contents. The major and trace element contents of the Jindong granitoids fall well within the adakitic field, whereas other Cretaceous granites in the same basin are plotted in the island arc ADR area in discrimination diagrams. Chondrite normalized REE patterns show generally enriced LREEs (La/Yb)C = 3.6-13.8) and slight negative to flat Eu anomalies. The mean Rb-Sr whole rock isotopic age of the Jindong granitoids is $114.6{\pm}9.1$ Ma with an initial Sr isotope ratio of 0.70457. These values suggest that the magma has mantle signature and intruded into the area during Early Cretaceous. The Jindong granitoids have similar paleogeographical locations, paleotectonic environments and intrusion ages to those of the Shiraishino granodiorites of Kyushu Island and the Tamba granitoids of San'yo belt located on southwestern Japanese arc.

Three-dimensional finite element analysis on intrusion of upper anterior teeth by three-piece base arch appliance according to alveolar bone loss (치조골 상실에 따른 three-piece base arch appliance를 이용한 상악전치부 intrusion에 대한 3차원 유한요소법적 연구)

  • Ha, Man-Hee;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.209-223
    • /
    • 2001
  • At intrusion of upper anterior teeth in patient with periodontal defect, the use of three-piece base arch appliance for pure intrusion is required. To investigate the change of the center of resistance and of the distal traction force according to alveolar bone height at intrusion of upper anterior teeth using this appliance, three-dimensional finite element models of upper six anterior teeth, periodontal ligament and alveolar bone were constructed. At intrusion of upper anterior teeth by three-piece base arch appliance, the following conclusions were drawn to the locations of the center of resistance according to the number of teeth, the change of distal traction force for pure intrusion and the correlation to the change of vertical, horizontal location of the center of resistance according to alveolar bone loss. 1. When the axial inclination and alveolar bone height were normal, the anteroposterior locations of center of resistance of upper anterior teeth according to the number of teeth contained were as follows : 1) In 2 anterior teeth group, the center of located in the mesial 1/3 area of lateral incisor bracket. 2) In 4 anterior teeth group. the center of resistance was located in the distal 2/3 of the distance between the bracket of lateral incisor and canine. 3) In 6 anterior teeth group, the center of resistance was located in the central area of first premolar bracket .4) As the number of teeth contained in anterior teeth group increased, the center of resistance shifted to the distal side. 2. When the alveolar bone height was normal, the anteroposterior position of the point of application of the intrusive force was the same position or a bit forward position of the center of resistance at application of distal traction force for pure intrusion. 3. When intrusion force and the point of application of the intrusive force were fixed, the changes of distal traction force for pure intrusion according to alveolar bon loss were as follows :1) Regardless of the alveolar bone loss, the distal traction force of 2, 4 anterior teeth groups were lower than that of 6 anterior teeth group. 2) As the alveolar bone loss increased, the distal traction forces of each teeth group were increased. 4. The correlations of the vertical, horizontal locations of the center of resistance according to maxillary anterior teeth groups and the alveolar bone height were as follows : 1) In 2 anterior teeth group, the horizontal position displacement to the vortical position displacement of the center of resistance according to the alveolar bone loss was the largest. As the number of teeth increased, the horizontal position displacement to the vertical position displacement of the center of resistance according to the alveolar bone loss showed a tendency to decrease. 2) As the alveolar bone loss increased, the horizontal position displacement to the vertical position displacement of the center of resistance regardless of the number of teeth was increased.

  • PDF

Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Changgi Basins; K-Ar Ages for the Volcanic Rocks (포항(浦項) 및 장기분지(盆地)에 대한 고지자기(古地磁氣), 층서(層序) 및 구조연구(構造硏究); 화산암류(火山岩類)의 K-Ar 연대(年代))

  • Lee, Hyun Koo;Moon, Hi-Soo;Min, Kyung Duck;Kim, In-Soo;Yun, Hyesu;Itaya, Tetsumaru
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.337-349
    • /
    • 1992
  • The Tertiary basins in Korea have widely been studied by numerous researchers producing individual results in sedimentology, paleontology, stratigraphy, volcanic petrology and structural geology, but interdisciplinary studies, inter-basin analysis and basin-forming process have not been carried out yet. Major work of this study is to elucidate evidences obtained from different parts of a basin as well as different Tertiary basins (Pohang, Changgi, Eoil, Haseo and Ulsan basins) in order to build up the correlation between the basins, and an overall picture of the basin architecture and evolution in Korea. According to the paleontologic evidences the geologic age of the Pohang marine basin is dated to be late Lower Miocence to Middle Miocene, whereas other non-marine basins are older as being either Early Miocene or Oligocene(Lee, 1975, 1978: Bong, 1984: Chun, 1982: Choi et al., 1984: Yun et al., 1990: Yoon, 1982). However, detailed ages of the Tertiary sediments, and their correlations in a basin and between basins are still controversial, since the basins are separated from each other, sedimentary sequence is disturbed and intruded by voncanic rocks, and non-marine sediments are not fossiliferous to be correlated. Therefore, in this work radiometric, magnetostratigraphic, and biostratigraphic data was integrated for the refinement of chronostratigraphy and synopsis of stratigraphy of Tertiary basins of Korea. A total of 21 samples including 10 basaltic, 2 porphyritic, and 9 andesitic rocks from 4 basins were collected for the K-Ar dating of whole rock method. The obtained age can be grouped as follows: $14.8{\pm}0.4{\sim}15.2{\pm}0.4Ma$, $19.9{\pm}0.5{\sim}22.1{\pm}0.7Ma$, $18.0{\pm}1.1{\sim}20.4+0.5Ma$, and $14.6{\pm}0.7{\sim}21.1{\pm}0.5Ma$. Stratigraphically they mostly fall into the range of Lower Miocene to Mid Miocene. The oldest volcanic rock recorded is a basalt (911213-6) with the age of $22.05{\pm}0.67Ma$ near Sangjeong-ri in the Changgi (or Janggi) basin and presumed to be formed in the Early Miocene, when Changgi Conglomerate began to deposit. The youngest one (911214-9) is a basalt of $14.64{\pm}0.66Ma$ in the Haseo basin. This means the intrusive and extrusive rocks are not a product of sudden voncanic activity of short duration as previously accepted but of successive processes lasting relatively long period of 8 or 9 Ma. The radiometric age of the volcanic rocks is not randomly distributed but varies systematically with basins and localities. It becomes generlly younger to the south, namely from the Changgi basin to the Haseo basin. The rocks in the Changgi basin are dated to be from $19.92{\pm}0.47$ to $22.05{\pm}0.67Ma$. With exception of only one locality in the Geumgwangdong they all formed before 20 Ma B.P. The Eoil basalt by Tateiwa in the Eoil basin are dated to be from $20.44{\pm}0.47$ to $18.35{\pm}0.62Ma$ and they are younger than those in the Changgi basin by 2~4 Ma. Specifically, basaltic rocks in the sedimentary and voncanic sequences of the Eoil basin can be well compared to the sequence of associated sedimentary rocks. Generally they become younger to the stratigraphically upper part. Among the basin, the Haseo basin is characterized by the youngest volcanic rocks. The basalt (911214-7) which crops out in Jeongja-ri, Gangdong-myon, Ulsan-gun is $16.22{\pm}0.75Ma$ and the other one (911214-9) in coastal area, Jujon-dong, Ulsan is $14.64{\pm}0.66Ma$ old. The radiometric data are positively collaborated with the results of paleomagnetic study, pull-apart basin model and East Sea spreading theory. Especially, the successively changing age of Eoil basalts are in accordance with successively changing degree of rotation. In detail, following results are discussed. Firstly, the porphyritic rocks previously known as Cretaceous basement (911213-2, 911214-1) show the age of $43.73{\pm}1.05$$49.58{\pm}1.13Ma$(Eocene) confirms the results of Jin et al. (1988). This means sequential volcanic activity from Cretaceous up to Lower Tertiary. Secondly, intrusive andesitic rocks in the Pohang basin, which are dated to be $21.8{\pm}2.8Ma$ (Jin et al., 1988) are found out to be 15 Ma old in coincindence with the age of host strata of 16.5 Ma. Thirdly, The Quaternary basalt (911213-5 and 911213-6) of Tateiwa(1924) is not homogeneous regarding formation age and petrological characteristics. The basalt in the Changgi basin show the age of $19.92{\pm}0.47$ and $22.05{\pm}0.67$ (Miocene). The basalt (911213-8) in Sangjond-ri, which intruded Nultaeri Trachytic Tuff is dated to be $20.55{\pm}0.50Ma$, which means Changgi Group is older than this age. The Yeonil Basalt, which Tateiwa described as Quaternary one shows different age ranging from Lower Miocene to Upper Miocene(cf. Jin et al., 1988: sample no. 93-33: $10.20{\pm}0.30Ma$). Therefore, the Yeonil Quarterary basalt should be revised and divided into different geologic epochs. Fourthly, Yeonil basalt of Tateiwa (1926) in the Eoil basin is correlated to the Yeonil basalt in the Changgi basin. Yoon (1989) intergrated both basalts as Eoil basaltic andesitic volcanic rocks or Eoil basalt (Yoon et al., 1991), and placed uppermost unit of the Changgi Group. As mentioned above the so-called Quarternary basalt in the Eoil basin are not extruded or intruaed simultaneously, but differentiatedly (14 Ma~25 Ma) so that they can not be classified as one unit. Fifthly, the Yongdong-ri formation of the Pomgogri Group is intruded by the Eoil basalt (911214-3) of 18.35~0.62 Ma age. Therefore, the deposition of the Pomgogri Group is completed before this age. Referring petrological characteristics, occurences, paleomagnetic data, and relationship to other Eoil basalts, it is most provable that this basalt is younger than two others. That means the Pomgogri Group is underlain by the Changgi Group. Sixthly, mineral composition of the basalts and andesitic rocks from the 4 basins show different ground mass and phenocryst. In volcanic rocks in the Pohang basin, phenocrysts are pyroxene and a small amount of biotite. Those of the Changgi basin is predominant by Labradorite, in the Eoil by bytownite-anorthite and a small amount pyroxene.

  • PDF

Occurrence and Chemical Composition of Dolomite from Komdok Pb-Zn Deposit (검덕 연-아연 광상의 돌로마이트 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.107-120
    • /
    • 2021
  • The Komdok Pb-Zn deposit, which is the largest Pb-Zn deposit in Korea, is located at the Hyesan-Riwon metallogenic zone in Jiao Liao Ji belt included Paleoproterozoic Macheolryeong group. The geology of this deposit consists of Paleoproterozoic metasedimentary rocks, Jurassic Mantapsan intrusive rocks and Cenozoic basalt. The Komdok deposit which is a SEDEX type deposit occurs as layer ore and vein ore in the Paleoproterozoic metasedimentary rocks. Based on mineral petrography and paragenesis, dolomites from this deposit are classified four types (1. dolomite (D0) as hostrock, 2. early dolomite (D1) associated with tremolite, actinolite, diopside, sphalerite and galena from amphibolite facies, 3. late dolomite (D2) associated with talc, calcite, quartz, sphalerite and galena from amphibolite facies, 4. dolomite (D3) associated with white mica, chlorite, sphalerite and galena from quartz vein). The structural formulars of dolomites are determined to be Ca1.00-1.20Mg0.80-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D0), Ca1.00-1.02M0.97-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D1), Ca0.99-1.03Mg0.93-0.98Fe0.01-0.05Mn0.00-0.01As0.00-0.01(CO3)2(D2) and Ca0.95-1.04Mg0.59-0.68Fe0.30-0.36Mn0.00-0.01 (CO3)2(D3), respectively. It means that dolomites from Komdok deposit have higher content of trace elements (FeO, MnO, HfO2, ZnO, PbO, Sb2O5 and As2O5) compared to the theoretical composition of dolomite. These trace elements (FeO, MnO, ZnO, Sb2O5 and As2O5) show increase and decrease trend according to paragenetic sequence, but HfO2 and PbO elements no show increase and decrease trend according to paragenetic sequence. Dolomites correspond to Ferroan dolomite (D0, D1 and D2), and Ferroan dolomite and ankerite (D3), respectively. Therefore, 1) dolomite (D0) as hostrock was formed by subsequent diagenesis after sedimentation of Paleoproterozoic (2012~1700 Ma) silica-bearing dolomite in the marine evaporative environment. 2) Early dolomite (D1) was formed by hydrothermal metasomatism origined metamorphism (amphibolite facies) associated with intrusion (1890~1680 Ma) of Paleoproterozoic Riwon complex. 3) Late dolomte (D2) was formed from residual fluid by a decrease of temperature and pressure. and dolomite (D3) in quartz vein was formed by intrusion (213~181 Ma) of Jurassic Mantapsan intrusive rocks.