• Title/Summary/Keyword: Intrusion Detection Systems

Search Result 354, Processing Time 0.026 seconds

Protecting Accounting Information Systems using Machine Learning Based Intrusion Detection

  • Biswajit Panja
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.111-118
    • /
    • 2024
  • In general network-based intrusion detection system is designed to detect malicious behavior directed at a network or its resources. The key goal of this paper is to look at network data and identify whether it is normal traffic data or anomaly traffic data specifically for accounting information systems. In today's world, there are a variety of principles for detecting various forms of network-based intrusion. In this paper, we are using supervised machine learning techniques. Classification models are used to train and validate data. Using these algorithms we are training the system using a training dataset then we use this trained system to detect intrusion from the testing dataset. In our proposed method, we will detect whether the network data is normal or an anomaly. Using this method we can avoid unauthorized activity on the network and systems under that network. The Decision Tree and K-Nearest Neighbor are applied to the proposed model to classify abnormal to normal behaviors of network traffic data. In addition to that, Logistic Regression Classifier and Support Vector Classification algorithms are used in our model to support proposed concepts. Furthermore, a feature selection method is used to collect valuable information from the dataset to enhance the efficiency of the proposed approach. Random Forest machine learning algorithm is used, which assists the system to identify crucial aspects and focus on them rather than all the features them. The experimental findings revealed that the suggested method for network intrusion detection has a neglected false alarm rate, with the accuracy of the result expected to be between 95% and 100%. As a result of the high precision rate, this concept can be used to detect network data intrusion and prevent vulnerabilities on the network.

GEP-based Framework for Immune-Inspired Intrusion Detection

  • Tang, Wan;Peng, Limei;Yang, Ximin;Xie, Xia;Cao, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1273-1293
    • /
    • 2010
  • Immune-inspired intrusion detection is a promising technology for network security, and well known for its diversity, adaptation, self-tolerance, etc. However, scalability and coverage are two major drawbacks of the immune-inspired intrusion detection systems (IIDSes). In this paper, we propose an IIDS framework, named GEP-IIDS, with improved basic system elements to address these two problems. First, an additional bio-inspired technique, gene expression programming (GEP), is introduced in detector (corresponding to detection rules) representation. In addition, inspired by the avidity model of immunology, new avidity/affinity functions taking the priority of attributes into account are given. Based on the above two improved elements, we also propose a novel immune algorithm that is capable of integrating two bio-inspired mechanisms (i.e., negative selection and positive selection) by using a balance factor. Finally, a pruning algorithm is given to reduce redundant detectors that consume footprint and detection time but do not contribute to improving performance. Our experimental results show the feasibility and effectiveness of our solution to handle the scalability and coverage problems of IIDS.

A Distributed Communication Model of Intrusion Detection System in Active Network

  • Park, Soo-Young;Park, Sang-Gug
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1577-1580
    • /
    • 2005
  • With remarkable growth of using Internet, attempts to try intrusions on network are now increasing. Intrusion Detection System is a security system which detects and copes illegal intrusions. Especially with increasing dispersive attacks through network, concerns for this Distributed Intrusion Detection are also rising. The previous Intrusion Detection System has difficulty in coping cause it detects intrusions only on particular network and only same segment. About same attacks, system lacks capacity of combining information and related data. Also it lacks cooperations against intrusions. Systematic and general security controls can make it possible to detect intrusions and deal with intrusions and predict. This paper considers Distributed Intrusion Detection preventing attacks and suggests the way sending active packets between nodes safely and performing in corresponding active node certainly. This study suggested improved E-IDS system which prevents service attacks and also studied sending messages safely by encoding. Encoding decreases security attacks in active network. Also described effective ways of dealing intrusions when misuses happens thorough case study. Previous network nodes can't deal with hacking and misuses happened in the middle nodes at all, cause it just encodes ends. With above suggested ideas, problems caused by security services can be improved.

  • PDF

Distributed and Scalable Intrusion Detection System Based on Agents and Intelligent Techniques

  • El-Semary, Aly M.;Mostafa, Mostafa Gadal-Haqq M.
    • Journal of Information Processing Systems
    • /
    • v.6 no.4
    • /
    • pp.481-500
    • /
    • 2010
  • The Internet explosion and the increase in crucial web applications such as ebanking and e-commerce, make essential the need for network security tools. One of such tools is an Intrusion detection system which can be classified based on detection approachs as being signature-based or anomaly-based. Even though intrusion detection systems are well defined, their cooperation with each other to detect attacks needs to be addressed. Consequently, a new architecture that allows them to cooperate in detecting attacks is proposed. The architecture uses Software Agents to provide scalability and distributability. It works in two modes: learning and detection. During learning mode, it generates a profile for each individual system using a fuzzy data mining algorithm. During detection mode, each system uses the FuzzyJess to match network traffic against its profile. The architecture was tested against a standard data set produced by MIT's Lincoln Laboratory and the primary results show its efficiency and capability to detect attacks. Finally, two new methods, the memory-window and memoryless-window, were developed for extracting useful parameters from raw packets. The parameters are used as detection metrics.

A Detailed Analysis of Classifier Ensembles for Intrusion Detection in Wireless Network

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1203-1212
    • /
    • 2017
  • Intrusion detection systems (IDSs) are crucial in this overwhelming increase of attacks on the computing infrastructure. It intelligently detects malicious and predicts future attack patterns based on the classification analysis using machine learning and data mining techniques. This paper is devoted to thoroughly evaluate classifier ensembles for IDSs in IEEE 802.11 wireless network. Two ensemble techniques, i.e. voting and stacking are employed to combine the three base classifiers, i.e. decision tree (DT), random forest (RF), and support vector machine (SVM). We use area under ROC curve (AUC) value as a performance metric. Finally, we conduct two statistical significance tests to evaluate the performance differences among classifiers.

A Genetic Algorithm-Based Intrusion Detection System

  • Lee, Han H.;Lee, Duk;Kim, Hee S.;Park, Jong U.
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.343-346
    • /
    • 2000
  • In this paper, a novel approach to intruder detection is introduced. The approach, based on the genetic algorithms, improved detection rate of the host systems which has traditionally relied on known intruder patterns and host addresses. Rather than making judgments on whether the access is instrusion or not, the systems can continuously monitor systems with categorized security level. With the categorization, when the intruder attempts repeatedly to access the systems, the security level is incrementally escalated. In the simulation of a simple intrusion, it was shown that the current approach improves robustness of the security systems by enhancing detection and flexibility. The evolutionary approach to intruder detection enhances adaptability of the system.

  • PDF

Network Intrusion Detection Using Transformer and BiGRU-DNN in Edge Computing

  • Huijuan Sun
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.458-476
    • /
    • 2024
  • To address the issue of class imbalance in network traffic data, which affects the network intrusion detection performance, a combined framework using transformers is proposed. First, Tomek Links, SMOTE, and WGAN are used to preprocess the data to solve the class-imbalance problem. Second, the transformer is used to encode traffic data to extract the correlation between network traffic. Finally, a hybrid deep learning network model combining a bidirectional gated current unit and deep neural network is proposed, which is used to extract long-dependence features. A DNN is used to extract deep level features, and softmax is used to complete classification. Experiments were conducted on the NSLKDD, UNSWNB15, and CICIDS2017 datasets, and the detection accuracy rates of the proposed model were 99.72%, 84.86%, and 99.89% on three datasets, respectively. Compared with other relatively new deep-learning network models, it effectively improved the intrusion detection performance, thereby improving the communication security of network data.

Distributed Denial of Service Defense on Cloud Computing Based on Network Intrusion Detection System: Survey

  • Samkari, Esraa;Alsuwat, Hatim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.67-74
    • /
    • 2022
  • One type of network security breach is the availability breach, which deprives legitimate users of their right to access services. The Denial of Service (DoS) attack is one way to have this breach, whereas using the Intrusion Detection System (IDS) is the trending way to detect a DoS attack. However, building IDS has two challenges: reducing the false alert and picking up the right dataset to train the IDS model. The survey concluded, in the end, that using a real dataset such as MAWILab or some tools like ID2T that give the researcher the ability to create a custom dataset may enhance the IDS model to handle the network threats, including DoS attacks. In addition to minimizing the rate of the false alert.

FLORA: Fuzzy Logic - Objective Risk Analysis for Intrusion Detection and Prevention

  • Alwi M Bamhdi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.179-192
    • /
    • 2023
  • The widespread use of Cloud Computing, Internet of Things (IoT), and social media in the Information Communication Technology (ICT) field has resulted in continuous and unavoidable cyber-attacks on users and critical infrastructures worldwide. Traditional security measures such as firewalls and encryption systems are not effective in countering these sophisticated cyber-attacks. Therefore, Intrusion Detection and Prevention Systems (IDPS) are necessary to reduce the risk to an absolute minimum. Although IDPSs can detect various types of cyber-attacks with high accuracy, their performance is limited by a high false alarm rate. This study proposes a new technique called Fuzzy Logic - Objective Risk Analysis (FLORA) that can significantly reduce false positive alarm rates and maintain a high level of security against serious cyber-attacks. The FLORA model has a high fuzzy accuracy rate of 90.11% and can predict vulnerabilities with a high level of certainty. It also has a mechanism for monitoring and recording digital forensic evidence which can be used in legal prosecution proceedings in different jurisdictions.

Intrusion Detection System Based on Multi-Class SVM (다중 클래스 SVM기반의 침입탐지 시스템)

  • Lee Hansung;Song Jiyoung;Kim Eunyoung;Lee Chulho;Park Daihee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.282-288
    • /
    • 2005
  • In this paper, we propose a new intrusion detection model, which keeps advantages of existing misuse detection model and anomaly detection model and resolves their problems. This new intrusion detection system, named to MMIDS, was designed to satisfy all the following requirements : 1) Fast detection of new types of attack unknown to the system; 2) Provision of detail information about the detected types of attack; 3) cost-effective maintenance due to fast and efficient learning and update; 4) incrementality and scalability of system. The fast and efficient training and updating faculties of proposed novel multi-class SVM which is a core component of MMIDS provide cost-effective maintenance of intrusion detection system. According to the experimental results, our method can provide superior performance in separating similar patterns and detailed separation capability of MMIDS is relatively good.