• 제목/요약/키워드: Intrinsic tumor

검색결과 68건 처리시간 0.037초

자연살해세포와 항암면역치료 (Natural Killer Cell and Cancer Immunotherapy)

  • 김헌식
    • 한양메디칼리뷰
    • /
    • 제33권1호
    • /
    • pp.59-64
    • /
    • 2013
  • Cancer remains the leading cause of death worldwide despite intense efforts in developing innovative treatments. Current approaches in cancer therapy are mainly directed to a selective targeting of cancer cells to avoid potential side effects associated with conventional therapy. In this respect, Natural killer (NK) cells have gained growing attention and are now being considered as promising therapeutic tools for cancer therapy owing to their intrinsic ability to rapidly recognize and kill cancer cells, while sparing normal healthy cells. NK cells play a key role in the first line of defense against transformed and virus-infected cells. NK cells sense their target through a whole array of receptors, both activating and inhibitory. Functional outcome of NK cell against target cells is determined by the balance of signals transmitted from diverse activating and inhibiting receptors. Despite significant progress made in the role of NK cells attack as a pivotal sentinel in tumor surveillance, the molecular has been that regulate NK cell responses remain unclear, which restricts the use of NK cells as a therapeutic measure. Accordingly, current efforts for NK cell-based cancer therapy have largely relied on the strategies that are based on the manipulation of inhibitory receptor function. However, if we better understand the mechanisms governing NK cell activation, including those mediated by diverse activating receptors, this knowledge can be applied to the development of optimal design for cancer immunotherapy by targeting NK cells.

Ras GTPase 및 Ras GTPase activating protein과 사람의 질병 (Ras GTPases and Ras GTPase Activating Proteins (RasGAPs) in Human Disease)

  • 장종수
    • 생명과학회지
    • /
    • 제28권9호
    • /
    • pp.1100-1117
    • /
    • 2018
  • Ras superfamily에 속하는 monomeric small GTPase는 현재까지 170여 종이 알려져 있으며 이들은 세포 신호전달에 있어서 분자 스위치(molecular switch)로 작용하고 있다. Ras GTPase는 guanosine diphosphate (GDP)와 결합하여 불활성화 되거나 혹은 guanosine triphosphate (GTP)와 결합하여 활성화되는 guanosine nucleotide 결합단백질로서 세포내의 수많은 생리작용을 조절하고 있다. 즉, 쉬고 있던 불활성화 상태의 Ras-GDP는 외부 신호에 반응하여 활성화 된 guanine nucleotide exchange factor (GEF)에 의하여 활성형인 Ras-GTP상태로 전환되어 그 하류로 신호를 전달하는 효과기로 작용하게 된다. 신호전달을 마친 Ras-GTP는 다시 불활성형인 Ras-GDP로 전환되어야 하는데 Ras 자체의 GTPase 활성이 미약하여 RasGTPase activating protein (RasGAP)의 도움을 받아야만 한다. 이와 같이 Ras GTPase는 GEF와 GAP의 활성으로 세포 안의 스위치를 켜고 끄게 된다. 현재까지 알려진 인간 암(cancer)의 30% 이상이 돌연변이를 포함하는 Ras switch의 비정상적인 작동에 기인한다는 점이 밝혀져 있으므로 Ras GTPase의 구조와 생리적 기능에 대한 최근의 연구결과들을 요약하였다. 나아가 GTPase activating protein으로서의 기능을 상실한 RasGAP분자의 돌연변이는 세포 안의 Ras 스위치를 계속 켜 두는 상태인 Ras-GTP 상태를 유발함으로서 종국에는 암의 발생을 촉발하게 된다. 이에, 본고에서는 최근에 와서 tumor suppressor로서 알려지면서 암의 치료 표적단백질로 떠오르게 된 RasGAP의 인체생리학적 기능을 고찰하였다. 인간 게놈 안에는 RASA1, NF1, GAP1 family 및 SynGAP family 등에 속하는 14종의 RasGAP 분자들이 존재하는데 이들 GAP분자들의 이상과 인간 질병의 연관성에 대한 최근의 연구결과들에 대해 고찰하였다.

Experimental Study on Inhibition Effects of the XAF1 Gene against Lung Cancer Cell Proliferation

  • Yang, Wen-Tao;Chen, Dong-Lai;Zhang, Fu-Quan;Xia, Ying-Chen;Zhu, Rong-Ying;Zhou, Duan-Shan;Chen, Yong-Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7825-7829
    • /
    • 2014
  • Objective: To investigate the effect of high expression of XAF1 in vivo or in vitro on lung cancer cell growth and apoptosis. Methods: 1. The A549 human lung cancer cell line was transfected with Ad5/F35 - XAF1, or Ad5/F35 - Null at the same multiplicity of infection (MOI); (hereinafter referred to as transient transfected cell strain); XAF1 gene mRNA and protein expression was detected by reverse transcription polymerase chain reaction (RT-PCR) and Western blotting respectively. 2. Methyl thiazolyl tetrazolium (MTT) and annexin V-FITC/PI double staining were used to detect cell proliferation and apoptosis before and after infection of Ad5/F35 - XAF1 with Western blotting for apoptosis related proteins, caspase 3, caspase - 8 and PARP. 3. After the XAF1 gene was transfected into lung cancer A549 cells by lentiviral vectors, and selected by screening with Blasticidin, reverse transcription polymerase chain reaction (RT-PCR) and Western blotting were applied to detect mRNA and protein expression, to establish a line with a stable high expression of XAF1 (hereinafter referred to as stable expression cell strain). Twenty nude mice were randomly divided into groups A and B, 10 in each group: A549/XAF1 stable expression cell strain was subcutaneously injected in group A, and A549/Ctrl stable cell line stable expression cell strain in group B (control group), to observe transplanted tumor growth in nude mice. Results: The mRNA and protein expression of XAF1 in A549 cells transfected by Ad5/F35 - XAF1 was significantly higher than in the control group. XAF1 mediated by adenovirus vector demonstrated a dose dependent inhibition of lung cancer cell proliferation and induction of apoptosis. This was accompanied by cleavage of caspase -3, -8, -9 and PARP, suggesting activation of intrinsic or extrinsic apoptotic pathways. A cell strain of lung cancer highly expressing XAF1 was established, and this demonstrated delayed tumor growth after transplantation in vivo. Conclusion: Adenovirus mediated XAF1 gene expression could inhibit proliferation and induce apoptosis in lung cancer cells in vitro; highly stable expression of XAF1 could also significantly inhibit the growth of transplanted tumors in nude mouse, with no obvious adverse reactions observed. Therefore, the XAF1 gene could become a new target for lung cancer treatment.

HeLa 세포의 Spheroid에 대한 방사선과 Platinum 유사체의 치사 효과 (Lethal Effects of Radiation and Platinum Analogues on Multicellular Spheroids of HeLa Cells)

  • 홍성언
    • Radiation Oncology Journal
    • /
    • 제7권2호
    • /
    • pp.149-156
    • /
    • 1989
  • HeLa 세포의 spheroid를 배 양시켜 cis-platinum과 carboplatin으로 처리한 후 그 반응을 세포의 생존분획으로 분석하였다. 체외실험 model인 spheroid를 사용하여 platinum유사체의 약효와 방사선 감수성을 평가하고 약제에 대한 단층 세포와 spheroid의 감수성 차이를 세포-생존곡선에서 규명하기 위하여 본 실험을 시행하였다. Cis-platinum 농도-곡선에서 spheroid의 $Cq=3.4{\mu}M$이고 $Co=1.2{\mu}M$이었다. 이 것은 단층세포에 비하여 Co는 큰 변화가 없으나 Cq가 증가되어 cis-platinum이 저산소층 세포보다 활동적으로 분화하는 표면세포에 주로 작용하였으며, 반대로 carboplatin의 효과는 spheroid에 대한 $(Co=15.0{\mu}M)$ 감수성이 단층세포$(Co=32.5{\mu}M)$에 비하여 크게 증가되어, spheroid의 심층 세포에 주로 작용하였다. 방사선과 carboplation의 병용효과를 세포 생존분획이 0.01 수준에서 isobologram으로 분석한 결과 상호작용으로 supra-additive 효과를 나타내었다. 따라서, carboplatin은 cis-platinum에 비하여 신장과 위장에 대한 독성작용이 적고, 방사선과 병용함으로써 향후 더욱 효과적 인 종양 치료에 중요한 역할을 할 것으로 기대한다.

  • PDF

인체 혈구암세포 U937에서 해양해면동물에서 추출된 Pectenotoxin-2에 의한 Apoptosis의 유발에 관한 연구 (Induction of Apoptosis by Pectenotoxin-2 Isolated from Marine Sponges in U937 Human Leukemic Cells)

  • 신동역;강호성;배송자;정지형;최영현
    • 한국해양바이오학회지
    • /
    • 제1권2호
    • /
    • pp.63-70
    • /
    • 2006
  • 본 연구에서는 U937 인체 백혈병 세포의 증식에 미치는 PTX-2의 영향을 조사한 결과, PTX-2의 처리에 따라 U937 세포는 처리 농도 및 처리 시간 의존적으로 심한 형태적 변형과 함께 증식이 억제되었다. 이러한 PTX-2 처리에 의한 U937 세포의 증식억제는 apoptosis 유발과 관련이 있었으며, 이를 DAPI staining에 의한 apoptotic body 형성, flow cytometry를 이용한 sub-G1 세포 빈도의 정량적 분석을 통하여 확인하였다. 이러한 PTX-2 처리에 의한 U937 세포의 apoptosis 유발은 Bcl-2 family에 속하는 anti-apoptotic 인자인 Bcl-$X_L$의 발현 감소 및 IAPs family에 속하는 유전자들의 선택적 발현 감소와 연관성이 있음을 알 수 있었다. 이상의 결과들은 인체 암세포에서 PTX-2의 항암작용을 이해하는데 중요한 자료가 될 것이고 나아가 PTX-2을 포함한 그와 유사한 항암제 후보물질들의 연구에 있어서 기초 자료로서 사용될 수 있을 것으로 생각된다.

  • PDF

외인성 기관협착 (Tracheal Stenosis by Extraluminal Compression)

  • 최종욱;김용환;박정수;정광윤;민헌기;최건
    • 대한기관식도과학회지
    • /
    • 제2권1호
    • /
    • pp.57-62
    • /
    • 1996
  • Tracheal stenosis can be classified into intrinsic stenosis secondary to tracheal inflammatory lesion or mass effect and extrinsic stenosis secondary tumors of thyroid, esophagus and mediastinum. Extrinsic stenosis which is frequently encountered in clinical setting could be often overlooked due to mild symptom. Recently, even with the increasing interest in extrinsic tracheal stenosis there are limitation in it's diagnosis and treatment. The purpose of this study is to provide guidance in the diagnosis and treaonent of extrinsic tracheal stenosis. Here, we report the etiology, symptoms, radiologic findings, pulmonary fuction finding, treatment and its results in 26 cases of extrinsic tracheal stenosis. Causes of extrinsic tracheal stenosis included compression of aiway by thyroid benign tumor in 13 cases to be the most common, next by thyroid malignancy in 9 cases, metastatic mediastinal turner in 2 cases, 1 case each for esophageal cancer and parathyroid cancer. In 3 cases simple tracheal resection and end to end anastomosis were done, 1 cases underwent total laryngectomy, and 8 cases were treated by conservative management, where all cases failed in treatment. The remaining 14 cases were successfully treated by removing the causes and maintaining tracheal tube insertion for amount of time. Extrinsic tracheal stenosis due to benign conditions were treated satisfactorily by removing mass, however with the malignant causes there was considerable amount of difficulty in treatment.

  • PDF

Induction of P3NS1 Myeloma Cell Death and Cell Cycle Arrest by Simvastatin and/or γ-Radiation

  • Abdelrahman, Ibrahim Y;Helwa, Reham;Elkashef, Hausein;Hassan, Nagwa HA
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.7103-7110
    • /
    • 2015
  • The present study was conducted to investigate the effect of ${\gamma}$-radiation alone or combined with a cytotoxic drug, simvastatin, on viability and cell cycling of a myeloma cell line. P3NS1 myeloma cells were treated with the selected dose of simvastatin ($0.1{\mu}M/l$) 24 hours prior to ${\gamma}$-irradiation (0.25, 0.5 and 1Gy). The cell viability, induction of apoptosis, cell death, cell cycling, generation of ROS, and expression of P53, Bax, Bcl2, caspase3, PARP1 and Fas genes were estimated. The results indicated that simvastatin ($0.1{\mu}M/l$) treatment for 24 hours prior to ${\gamma}$-irradiation increased cell death to 37.5% as compared to 4.81% by radiation (0.5Gy) alone. It was found that simvastatin treatment before irradiation caused arrest of cells in G0/G1 and G2/M phases as assessed using flow cytometry. Interestingly, simvastatin treatment of P3NS1 cells increased the intracellular ROS production and decreased antioxidant enzyme activity with increased P53, Bax and Caspase3 gene expression while that of Bcl2 was decreased. Consequently, our results indicated that pre-treatment with simvastatin increased radio sensitivity of myeloma tumor cells in addition to apoptotic effects through an intrinsic mitochondrial pathway.

천화분이 MCF-7 유방암 세포주의 G2/M 세포주기 억제에 미치는 영향 (Effect of Arresting MCF-7 Human Breast Carcinoma Cell at G2/M Phase of Trichosanthes Kirilowii)

  • 정승민;정미경;고성규;최유경;박종형;전찬용
    • 동의생리병리학회지
    • /
    • 제25권5호
    • /
    • pp.857-862
    • /
    • 2011
  • The purpose of this study is to investigate the anti-proliferative mechanism by Trichosanthes kirilowii (TCK) in MCF-7 human breast carcinoma cell. In this study, we used human breast cancer cell line, Michigan cancer foundation-7 cells (MCF-7 cells). They were co-incubated with 30~200 ${\mu}g$/ml TCK for 48 hours, and cell viability was measured by Water-soluble tetrazolium salt-1 (WST-1) assay. After MCF-7 cells were exposed to 60 ${\mu}g$/ml of TCK for 0, 3, 6, 12, 24, 48 hours, We performed flow analysis cytometry sorting(FACS) and western blot analysis. We investigated the effect of dose-dependent cell growth inhibition by TCK, which could be proved by WST-1 assay. Also, flow cytometry analysis showed that TCK increased percentage of subG1 phase and G2/M phase cell cycle. In addition, TCK induced apoptosis through the expression of caspase-9, -3 and poly(ADP-ribose) polymerase(PARP) activation. Moreover, we showed that ATM-dependent G2/M phase arrest by DNA damage and phosphorylation of chk2, cdc25C, cdc2(Tyr15). Taken together, these results suggest that by G2/M phase arrest through DNA damage and inducing of apoptosis through intrinsic pathway, TCK may have potential tumor suppressor in breast cancer.

Protein Profiles Associated with Anoikis Resistance of Metastatic MDA-MB-231 Breast Cancer Cells

  • Akekawatchai, Chareeporn;Roytrakul, Sittiruk;Kittisenachai, Suthathip;Isarankura-Na-Ayudhya, Patcharee;Jitrapakdee, Sarawut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권2호
    • /
    • pp.581-590
    • /
    • 2016
  • Resistance to anoikis, a cell-detachment induced apoptosis, is one of the malignant phenotypes which support tumor metastasis. Molecular mechanisms underlying the establishment of this phenotype require further investigation. This study aimed at exploring protein expression profiles associated with anoikis resistance of a metastatic breast cancer cell. Cell survival of suspension cultures of non-metastatic MCF-7 and metastatic MDA-MB-231 cells were compared with their adherent cultures. Trypan blue exclusion assays demonstrated a significantly higher percentage of viable cells in MDA-MB-231 than MCF-7 cell cultures, consistent with analysis of annexin V-7-AAD stained cells indicating that MDA-MB-231 possess anti-apoptotic ability 1.7 fold higher than MCF-7 cells. GeLC-MS/MS analysis of protein lysates of MDA-MB-231 and MCF-7 cells grown under both culture conditions identified 925 proteins which are differentially expressed, 54 of which were expressed only in suspended and adherent MDA-MB-231 but not in MCF-7 cells. These proteins have been implicated in various cellular processes, including DNA replication and repair, transcription, translation, protein modification, cytoskeleton, transport and cell signaling. Analysis based on the STITCH database predicted the interaction of phospholipases, PLC and PLD, and 14-3-3 beta/alpha, YWHAB, with the intrinsic and extrinsic apoptotic signaling network, suggesting putative roles in controlling anti-anoikis ability. MDA-MB-231 cells grown in the presence of inhibitors of phospholipase C, U73122, and phospholipase D, FIPI, demonstrated reduced ability to survive in suspension culture, indicating functional roles of PLC and PLD in the process of anti-anoikis. Our study identified intracellular mediators potentially associated with establishment of anoikis resistance of metastatic cells. These proteins require further clarification as prognostic and therapeutic targets for advanced breast cancer.

HY251, a Novel Decahydrocyclopenta[a]indene Analog, Induces Apoptosis via tBid-Mediated Intrinsic Pathway in Human Ovarian Cancer PA-1 Cells

  • Suh, Hyewon;Choi, Ko-Woon;Kim, Myung Sic;Kim, Jeong Hyeon;Noh, Sun Young;Sung, Moon-Hee;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권11호
    • /
    • pp.1591-1595
    • /
    • 2012
  • We previously isolated a novel compound, HY251, with the molecular structure of 3-propyl-2-vinyl-1,2,3,3a,3b,6,7,7a,8,8a-decahydrocyclopenta[a]indene-3,3a,7a,8a-tetraol from the roots of Aralia continentalis. The current study was designed to evaluate the detailed molecular mechanisms underlying the apoptotic induction by HY251 in human ovarian cancer PA-1 cells. TUNEL assay and Western blot analyses revealed an appreciable apoptotic induction in PA-1 cells treated with $60{\mu}M$ of HY251 for 24 h. This apoptotic induction was associated with caspase-8-dependent Bid cleavage, which in turn resulted in the formation of pro-apoptotic truncated Bid (tBid), and activation of caspase-9 and -3, as well as the cleavage of poly(ADP-ribose) polymerase (PARP). Moreover, we found that this death event was also associated with the significant up-regulation and activation of the p53 tumor-suppressor protein through phosphorylation at Ser15. Therefore, we suggest that HY251 may be a potent cancer chemotherapeutic candidate for the treatment of ovarian cancer.