• Title/Summary/Keyword: Intrinsic barrier

Search Result 47, Processing Time 0.035 seconds

Computer-simulation with Different Types of Bandgap Profiling for Amorphous Silicon Germanium Thin Films Solar Cells

  • Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.320-320
    • /
    • 2014
  • Amorphous silicon alloy (a-Si) solar cells and modules have been receiving a great deal of attention as a low-cost alternate energy source for large-scale terrestrial applications. Key to the achievement of high-efficiency solar cells using the multi-junction approach is the development of high quality, low band-gap materials which can capture the low-energy photons of the solar spectrum. Several cell designs have been reported in the past where grading or buffer layers have been incorporated at the junction interface to reduce carrier recombination near the junction. We have investigated profiling the composition of the a-SiGe alloy throughout the bulk of the intrinsic material so as to have a built-in electrical field in a substantial portion of the intrinsic material. As a result, the band gap mismatch between a-Si:H and $a-Si_{1-x}Ge_x:H$ creates a barrier for carrier transport. Previous reports have proposed a graded band gap structure in the absorber layer not only effectively increases the short wavelength absorption near the p/i interface, but also enhances the hole transport near the i-n interface. Here, we modulated the GeH4 flow rate to control the band gap to be graded from 1.75 eV (a-Si:H) to 1.55 eV ($a-Si_{1-x}Ge_x:H$). The band structure in the absorber layer thus became like a U-shape in which the lowest band gap was located in the middle of the i-layer. Incorporation of this structure in the middle and top cell of the triple-cell configuration is expected to increase the conversion efficiency further.

  • PDF

Characterization of Selectively Absorbing Properties of Indium Tin Oxide Thin Films by UV-VIS-IR Spectroscopy (UV-VIS-IR 분광법에 의한 산화 인듐 주석 박막의 선택적 투과 흡수 특성 관찰)

  • Lee, Jeon-Kook;Lee, Dong-Heon;Cho, Nam-Hee
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.135-142
    • /
    • 1992
  • Indium tin oxide(ITO) films coated on the window glass selectively transmit the solar energy and infrared. We call this system passive solar collectors. Selectively absorbing properties of sol gel dip coated ITO films were characterized by UV-VIS-NIR spectroscopy. The effects of heat treating temperature, time, atmosphere, substrate and barrier layers are concerned. Indium tin oxide films heat-treated at $500^{\circ}C$ in a reducing atmosphere show intrinsic properties. Efficiency of solar energy transmittance was enhanced by coating of $SiO_2-ZrO_2$ as an alkali ion barrier layer. Energy was saved by the double layers of $SiO_2-ZrO_2$ and ITO since solar energy is transmitted and heat generated inside(${\lambda}$ > 2700nm) is reflected.

  • PDF

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF

Scanning Kelvin Probe Microscopy analysis of silicon carbide device structures (Scanning Kelvin Probe Microscopy를 이용한 SiC 소자의 분석)

  • Jo, Yeong-Deuk;Ha, Jae-Geun;Koh, Jung-Hyuk;Bang, Uk;Kim, Sang-Cheol;Kim, Nam-Gyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.132-132
    • /
    • 2008
  • Silicon carbide (SiC) is an attractive material for high-power, high-temperature, and high-frequency applications. So far, atomic force microscopy (AFM) has been extensively used to study the surface charges, dielectric constants and electrical potential distribution as well as topography in silicon-based device structures, whereas it has rarely been applied to SiC-based structures. In this work, the surface potential and topography distributions SiC with different doping levels were measured at a nanometer-scale resolution using a scanning kelvin probe force microscopy (SKPM) with a non-contact mode AFM. The measured results were calibrated using a Pt-coated tip and a metal defined electrical contacts of Au onto SiC. It is assumed that the atomically resolved surface potential difference does not originate from the intrinsic work function of the materials but reflects the local electron density on the surface. It was found that the work function of the Au deposited on SiC surface was higher than that of original SiC surface. The dependence of the surface potential on the doping levels in SiC, as well as the variation of surface potential with respect to the schottky barrier height has been investigated. The results confirm the concept of the work function and the barrier heights of metal/SiC structures.

  • PDF

Work Function Modification of Indium Tin Oxide Thin Films Sputtered on Silicon Substrate

  • Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.351.2-351.2
    • /
    • 2014
  • Indium tin oxide (ITO) has a lot of variations of its properties because it is basically in an amorphous state. Therefore, the differences in composition ratio of ITO can result in alteration of electrical properties. Normally, ITO is considered as transparent conductive oxide (TCO), possessing excellent properties for the optical and electrical devices. Quantitatively, TCO has transparency over 80 percent within the range of 380nm to 780nm, which is visible light although its specific resistance is less than $10-3{\Omega}/cm$. Thus, the solar cell is the best example for which ITO has perfectly matching profile. In addition, when ITO is used as transparent conductive electrode, this material essentially has to have a proper work function with contact materials. For instance, heterojunction with intrinsic thin layer (HIT) solar cell could have both front ITO and backside ITO. Because each side of ITO films has different type of contact materials, p-type amorphous silicon and n-type amorphous silicon, work function of ITO has to be modified to transport carrier with low built-in potential and Schottky barrier, and approximately requires variation from 3 eV to 5 eV. In this study, we examine the change of work function for different sputtering conditions using ultraviolet photoelectron spectroscopy (UPS). Structure of ITO films was investigated by spectroscopic ellipsometry (SE) and scanning electron microscopy (SEM). Optical transmittance of the films was evaluated by using an ultraviolet-visible (UV-Vis) spectrophotometer

  • PDF

Andreev reflection in the c-axis transport of $Bi_2$$Sr_2$Ca$Cu_2$$O_{8+x}$ single crystals near $T_c$

  • Chang, Hyun-Sik;Lee, Hu-Jong
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.140-145
    • /
    • 2002
  • An enhancement of the c-axis differential conductance around the zero-bias voltage near the superconducting transition temperature $T_{c}$ has been observed in $Au/Bi_2$$Sr_2$$CaCu_2$$O_{8+x}$ junctions. We attribute such an enhancement to the Andreev reflection (AR) between the surface Cu-O bilayer with suppressed superconductivity and the next superconducting Cu-O bilayer. The continuous evolution of the differential conductance, from gap like depression to an AR-like peak structure, around the zero-bias voltage points to weakening of the barrier strength of the nonsuperconducting layer between adjacent Cu-O bilayers as temperature approaches $T_{c}$ from below. The peak structure disappeared just below the bulk $T_{c}$ value of underdoped Bi2212 single crystals, whereas it survived up to ~1 K above $T_{c}$ in Junctions prepared on slightly overdosed crystals. According to a recently proposed theoretical consideration, a wider temperature range of the AR a bone $T_{c}$ is expected in the underdoped regime when phase-incoherent preformed pairs emerge in the pseudogap state. Our result is in contradiction to the preformed pair scenario. scenario.o.

  • PDF

Development of Operation Control System for the 3 Ton/Day Bench Scale Gasifier (3톤/일 석탄가스화 반응장치의 운전제어 시스템 개발)

  • 김대규;윤용승;장휴정;유진열;홍만화
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.05a
    • /
    • pp.64-77
    • /
    • 1994
  • 현재 건설중인 3톤/일 규모의 석탄가스화기 운전제어를 위한 콘트롤시스템은 각종 하드웨어와 소프트웨어로 구성된다. 하드웨어는 운전자가 접하게되는 컴퓨터 화면(Operator Console), 운전 제어용 판넬(Hardwired Console), 본 시스템의 핵심인 콘트롤러(PLC; Programmable Logic Controller), 폭발성가스와 분진이 있는 환경하에서의 안전운전을 위한 본질안전 장벽(Intrinsic Safety Barrier) 및 운전정보 수집과 운전 제어를 위한 각종 전/계장품(Field Instrument) 등으로 구성된다. 본 시스템에 포함되는 소프트웨어에는 운전자와 콘트롤러간의 통신을 위한 운전제어화면(GUI;Graphical User Interface), 전체적인 제어를 위한 콘트롤로직(Control Logic)등이있다. 한편 각종 펌프 및 보일러 등 보조설비로의 전기공급을 위한 MCC(Motor Control Center)도 하나의 구성원이 된다. 본 논문은 석탄가스화 반응기의 운전에 관한 전반적인 검토와 콘트롤시스템을 구성하는 각 요소와 각각의 특징 및 그 개발 현황에 대한 검토를 그 내용으로 한다. 본 연구과제를 통해 제작, 설치될 석탄가스화기는 차세대 발전 시스템으로 주목을 받고있는 석탄가스화 복합발전시스템의 핵심부분으로, 본 반응장치의 제어에 관한 경험은 상용 규모의 석탄가스화 반응기에도 유사하게 적용될 것으로 기대된다.

  • PDF

Fabrication and Characteristics of Reflection Type InGaAs MQW SEED (반사형 InGaAs MQW SEED 소자의 제작 및 특성)

  • Kim, Sung-Woo;Park, Sung-Soo;Park, Jong-Cheol;Kim, Taek-Seung;Kwon, O-Dae;Kang, Bong-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1216-1219
    • /
    • 1994
  • A reflection type SEED from LP-MOCVD grown InGaAs/GaAs ESQW structures, with 5% In fraction, has been fabricated and its basic characteristics were investigated. Its intrinsic region consists of 50 pairs of alternating $100{\AA}$ $In_{0.05}Ga_{0.95}As$ barrier and $100{\AA}$ GaAs layers. And a multilayer reflector stack of $Al_{0.12}Ga_{0.88}As(641{\AA})-/AlAs(774{\AA})$ was vertically integrated below the p-i-n structures. The device processing includes the mesa etching, insulator deposition, indium metallization, and thermal alloy for Ohmic contact. Photocurrent spectrum measurement showed the exciton absorption peak at 905nm and availability as a optical switching device. This device showed a contrast ratio of 2:1 by the reflectance spectrum measurement.

  • PDF

Ab Initio Study on the Thermal Decomposition of CH3CF2O Radical

  • Singh, Hari Ji;Mishra, Bhupesh Kumar;Gour, Nand Kishor
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2973-2978
    • /
    • 2009
  • The decomposition reaction mechanism of $CH_3CF_2O$ radical formed from hydroflurocarbon, $CH_3CHF_2$ (HFC-152a) in the atmosphere has been investigated using ab-initio quantum mechanical methods. The geometries of the reactant, products and transition states involved in the decomposition pathways have been optimized and characterized at DFT-B3LYP and MP2 levels of theories using 6-311++G(d,p) basis set. Calculations have been carried out to observe the effect of basis sets on the optimized geometries of species involved. Single point energy calculations have been performed at QCISD(T) and CCSD(T) level of theories. Out of the two prominent decomposition channels considered viz., C-C bond scission and F-elimination, C-C bond scission is found to be the dominant path involving a barrier height of 12.3 kcal/mol whereas the F-elimination path involves that of a 28.0 kcal/mol. Using transition-state theory, rate constant for the most dominant decomposition pathway viz., C-C bond scission is calculated at 298 K and found to be 1.3 ${\times}$ 10$^4s{-1}$. Transition states are searched on the potential energy surfaces involving both decomposition channels and each of the transition states are characterized. The existence of transition states on the corresponding potential energy surface are ascertained by performing Intrinsic Reaction Coordinate (IRC) calculation.

Creep & Tensile Properties of Thermally Grown Alumina Films (열 생성 알루미나 박막의 크리프 및 인장 특성)

  • Ko, Gyoung-Dek;Sun, Shin-Kyu;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.665-670
    • /
    • 2007
  • Alpha-phase alumina TGO(Thermally Grown Oxide) forms on the interface between zirconia top coat and bond coat of thermal barrier coating system for superalloys during exposure to high temperature over $1000^{\circ}C$. It is known to provide a good protection against hot corrosion and to cause surface failure such as rumpling and cracking due to difference in thermal expansion coefficient from the substrate metal and the lateral growth. Consequently, mechanical properties of the alumina TGO at the high temperature are the key parameters determining the integrity of TBC system. In this work, by using Fecralloy foils as the alumina forming substrate, creep tests and tensile tests have been performed with various TGO thicknesses$(h=0{\sim}4{\mu}m)$ and yttrium contents(0, 200ppm) at $1200^{\circ}C$. Displacement-time curves and load-displacement curves for each TGO thickness(h=1,2,..) were measured from the creep and tensile tests, respectively, and compared with the curves without TGO thickness(h=0). As the result, the intrinsic tensile and creep properties of TGO itself were determined.