• 제목/요약/키워드: Intraoperative computed tomography

검색결과 69건 처리시간 0.023초

The Value of Computed Tomography Scan in Three-dimensional Planning and Intraoperative Navigation in Primary Total Hip Arthroplasty

  • Fabio Mancino;Andreas Fontalis;Ahmed Magan;Ricci Plastow;Fares S. Haddad
    • Hip & pelvis
    • /
    • 제36권1호
    • /
    • pp.26-36
    • /
    • 2024
  • Total hip arthroplasty (THA) is a frequently performed procedure; the objective is restoration of native hip biomechanics and achieving functional range of motion (ROM) through precise positioning of the prosthetic components. Advanced three-dimensional (3D) imaging and computed tomography (CT)-based navigation are valuable tools in both the preoperative planning and intraoperative execution. The aim of this study is to provide a thorough overview on the applications of CT scans in both the preoperative and intraoperative settings of primary THA. Preoperative planning using CT-based 3D imaging enables greater accuracy in prediction of implant sizes, leading to enhancement of surgical workflow with optimization of implant inventory. Surgeons can perform a more thorough assessment of posterior and anterior acetabular wall coverage, acetabular osteophytes, anatomical landmarks, and thus achieve more functional implant positioning. Intraoperative CT-based navigation can facilitate precise execution of the preoperative plan, to attain optimal positioning of the prosthetic components to avoid impingement. Medial reaming can be minimized preserving native bone stock, which can enable restoration of femoral, acetabular, and combined offsets. In addition, it is associated with greater accuracy in leg length adjustment, a critical factor in patients' postoperative satisfaction. Despite the higher costs and radiation exposure, which currently limits its widespread adoption, it offers many benefits, and the increasing interest in robotic surgery has facilitated its integration into routine practice. Conducting additional research on ultra-low-dose CT scans and examining the potential for translation of 3D imaging into improved clinical outcomes will be necessary to warrant its expanded application.

Usefulness of intraoperative transcranial sonography in patients with traumatic brain injuries: a comparison with postoperative computed tomography

  • Mahn Jeong Ha;Seung Han Yu;Jung Hwan Lee;Hyuk Jin Choi;Byung Chul Kim
    • Journal of Trauma and Injury
    • /
    • 제36권1호
    • /
    • pp.8-14
    • /
    • 2023
  • Purpose: The aim of this study was to assess the agreement between intraoperative transcranial sonography (TCS) and postoperative computed tomography (CT) in patients with traumatic brain injuries. Methods: We performed a retrospective cross-sectional study of 35 patients who underwent TCS during surgery, among those who presented to a regional trauma center and underwent decompressive craniectomy between January 1, 2017 and April 30, 2020. Results: The mean difference between TCS and CT in measuring the midline shift was -1.33 mm (95% confidence interval, -2.00 to -0.65; intraclass correlation coefficient [ICC], 0.96; P<0.001). An excellent correlation was found between TCS and CT in assessing contralateral subdural hematomas (ICC, 0.96; P<0.001) and focal hematoma lesions (ICC, 0.99; P<0.001). A very good correlation between TCS and CT was found for measurements of ventricle width (ICC, 0.92; P<0.001). Conclusions: TCS during surgery is considered an effective diagnostic tool for the detection of intraoperative parenchymal changes in patients with traumatic brain injuries.

Mobile Computed Tomography : Three Year Clinical Experience in Korea

  • Jeon, Jin Sue;Lee, Sang Hyung;Son, Young-Je;Yang, Hee-Jin;Chung, Young Seob;Jung, Hee-Won
    • Journal of Korean Neurosurgical Society
    • /
    • 제53권1호
    • /
    • pp.39-42
    • /
    • 2013
  • Objective : Obtaining real-time image is essential for neurosurgeons to minimize invasion of normal brain tissue and to prompt diagnosis of intracranial event. The aim of this study was to report our three-year experience with a mobile computed tomography (mCT) for intraoperative and bedside scanning. Methods : A total of 357 mCT (297 patients) scans from January 2009 to December 2011 in single institution were reviewed. After excluding postoperative routine follow-up, 202 mCT were included for analysis. Their medical records such as diagnosis, clinical application, impact on decision making, times, image quality and radiologic findings were assessed. Results : Two-hundred-two mCT scans were performed in the operation room (n=192, 95%) or intensive care unit (ICU) (n=10, 5%). Regarding intraoperative images, extent of resection of tumor (n=55, 27.2%), degree of hematoma removal (n=42, 20.8%), confirmation of catheter placement (n=91, 45.0%) and monitoring unexpected complications (n=4, 2.0%) were evaluated. A total of 14 additional procedures were introduced after confirmation of residual tumor (n=7, 50%), hematoma (n=2, 14.3%), malpositioned catheter (n=3, 21.4%) and newly developed intracranial events (n=2, 14.3%). Every image was obtained within 15 minutes and image quality was sufficient for interpretation. Conclusion : mCT is feasible for prompt intraoperative and ICU monitoring with enhanced diagnostic certainty, safety and efficiency.

Three-dimensional intraoperative computed tomography imaging for zygomatic fracture repair

  • Peleg, Oren;Ianculovici, Clariel;Shuster, Amir;Mijiritsky, Eitan;Oz, Itay;Kleinman, Shlomi
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제47권5호
    • /
    • pp.382-387
    • /
    • 2021
  • Objectives: Zygomatic complex (ZMC) fractures comprise up to 40% of all facial fractures. Misaligned bone fragments and misplaced fixation hardware traditionally detected postoperatively on plain radiographs of the skull might require re-operation. The intraoperative O-Arm (Medtronic, USA) is a three-dimensional (3D) computed tomographic imaging system. Materials and Methods: This retrospective single-center study evaluated the utility of O-Arm scanning during corrective surgeries for ZMC and zygomatic arch (ZA) fractures from 2018 to 2020. Three females and 16 males (mean age, 31.52 years; range, 22-48 years) were included. Fracture instability (n=6) and facial deformity (n=15) were the most frequent indications for intraoperative 3D O-Arm scan. Results: The images demonstrated that all fracture lines were properly reduced and fixed. Another scan performed at the end of the fixation or reduction stage, however, revealed suboptimal results in five of the 19 cases, and further reduction and fixation of the fracture lines were required. Conclusion: Implementation of an intraoperative O-Arm system in ZMC and ZA fracture surgeries assists in obtaining predictable and accurate results and obviates the need for revision surgeries. The device should be considered for precise operations such as ZMC fracture repairs.

The Effect of Hounsfield Unit Value with Conventional Computed Tomography and Intraoperative Distraction on Postoperative Intervertebral Height Reduction in Patients Following Stand-Alone Anterior Cervical Discectomy and Fusion

  • Lee, Jun Seok;Son, Dong Wuk;Lee, Su Hun;Ki, Sung Soon;Lee, Sang Weon;Song, Geun Sung;Woo, Joon Bum;Kim, Young Ha
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권1호
    • /
    • pp.96-106
    • /
    • 2022
  • Objective : The most common complication of anterior cervical discectomy and fusion (ACDF) is cage subsidence and maintenance of disc height affects postoperative clinical outcomes. We considered cage subsidence as an inappropriate indicator for evaluating preservation of disc height. Thus, this study aimed to consider patients with complications such as reduced total disc height compared to that before surgery and evaluate the relevance of several factors before ACDF. Methods : We retrospectively reviewed the medical records of 40 patients who underwent stand-alone single-level ACDF using a polyetheretherketone (PEEK) cage at our institution between January 2012 and December 2018. Our study population comprised 19 male and 21 female patients aged 24-70 years. The minimum follow-up period was 1 year. Twenty-seven patients had preoperative bone mineral density (BMD) data on dual-energy X-ray absorptiometry. Clinical parameters included sex, age, body mass index, smoking history, and prior medical history. Radiologic parameters included the C2-7 cobb angle, segmental angle, sagittal vertical axis, disc height, and total intervertebral height (TIH) at the preoperative and postoperative periods. Cage decrement was defined as the reduction in TIH at the 6-month follow-up compared to preoperative TIH. To evaluate the bone quality, Hounsfield unit (HU) value was calculated in the axial and sagittal images of conventional computed tomography. Results : Lumbar BMD values and cervical HU values were significantly correlated (r=0.733, p<0.001). We divided the patients into two groups based on cage decrement, and 47.5% of the total patients were regarded as cage decrement. There were statistically significant differences in the parameters of measuring the HU value of the vertebra and intraoperative distraction between the two groups. Using these identified factors, we performed a receiver operating characteristic (ROC) curve analysis. Based on the ROC curve, the cut-off point was 530 at the HU value of the upper cortical and cancellous vertebrae (p=0.014; area under the curve [AUC], 0.727; sensitivity, 94.7%; specificity, 42.9%) and 22.41 at intraoperative distraction (p=0.017; AUC, 0.722; sensitivity, 85.7%; specificity, 57.9%). Using this value, we converted these parameters into a bifurcated variable and assessed the multinomial regression analysis to evaluate the risk factors for cage decrement in ACDF. Intraoperative distraction and HU value of the upper vertebral body were independent factors of postoperative subsidence. Conclusion : Insufficient intraoperative distraction and low HU value showed a strong relationship with postoperative intervertebral height reduction following single stand-alone PEEK cage ACDF.

Comparative Analysis of Surgical Outcomes of C1-2 Fusion Spine Surgery between Intraoperative Computed Tomography Image Based Navigation-Guided Operation and Fluoroscopy-Guided Operation

  • Lee, Jun Seok;Son, Dong Wuk;Lee, Su Hun;Ki, Sung Soon;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권2호
    • /
    • pp.237-247
    • /
    • 2020
  • Objective : Fixation of the C1-2 segment is challenging because of the complex anatomy in the region and the need for a high degree of accuracy to avoid complications. Preoperative 3D-computed tomography (CT) scans can help reduce the risk of complications in the vertebral artery, spinal cord, and nerve roots. However, the patient may be susceptible to injury if the patient's anatomy does not match the preoperative CT scans. The intraoperative 3D image-based navigation systems have reduced complications in instrument-assisted techniques due to greater accuracy. This study aimed to compare the radiologic outcomes of C1-2 fusion surgery between intraoperative CT image-guided operation and fluoroscopy-guided operation. Methods : We retrospectively reviewed the radiologic images of 34 patients who underwent C1-2 fusion spine surgery from January 2009 to November 2018 at our hospital. We assessed 17 cases each of degenerative cervical disease and trauma in a study population of 18 males and 16 females. The mean age was 54.8 years. A total of 139 screws were used and the surgical procedures included 68 screws in the C1 lateral mass, 58 screws in C2 pedicle, nine screws in C2 lamina and C2 pars screws, four lateral mass screws in sub-axial level. Of the 34 patients, 19 patients underwent screw insertion using intraoperative mobile CT. Other patients underwent atlantoaxial fusion with a standard fluoroscopy-guided device. Results : A total of 139 screws were correctly positioned. We analyzed the positions of 135 screws except for the four screws that performed the lateral mass screws in C3 vertebra. Minor screw penetration was observed in seven cases (5.2%), and major pedicle screw penetration was observed in three cases (2.2%). In one case, the malposition of a C2 pedicle screw was confirmed, which was subsequently corrected. There were no complications regarding vertebral artery injury or onset of new neurologic deficits. The screw malposition rate was lower (5.3%) in patients who underwent intraoperative CT-based navigation than that for fluoroscopy-guided cases (10.2%). And we confirmed that the operation time can be significantly reduced by surgery using intraoperative O-arm device. Conclusion : Spinal navigation using intraoperative cone-beam CT scans is reliable for posterior fixation in unstable C1-2 pathologies and can be reduced the operative time.

Multidetector computed tomography in preoperative planning for temporomandibular joint ankylosis: A pictorial review and proposed structured reporting format

  • Singh, Rashmi;Bhalla, Ashu Seith;Manchanda, Smita;Roychoudhury, Ajoy
    • Imaging Science in Dentistry
    • /
    • 제51권3호
    • /
    • pp.313-321
    • /
    • 2021
  • Ankylosis of the temporomandibular joint (TMJ) is a disabling disease resulting from fibrous or bony fusion of the mandibular condyle and the glenoid fossa. Early diagnosis and surgical treatment are essential to prevent facial deformity and other complications. Conventional radiography has limitations in demonstrating the true extent of ankylosis. It is important for surgeons to be aware of the size and degree of bony ankylosis in order to perform complete resection of the ankylotic mass. In addition, a detailed evaluation of the relationship with adjacent vital structures such as the internal maxillary artery, inferior alveolar nerve canal, external auditory canal, and skull base are crucial to avoid iatrogenic injury. Multidetector computed tomography (MDCT) is the current imaging modality of choice for preoperative assessments. Herein, the authors propose a structured CT reporting template for TMJ ankylosis to strengthen the value of the preoperative imaging report and to reduce the rates of intraoperative complications and recurrence.

Intraoperative Tumor Localization of Early Gastric Cancers

  • Jeong, Sang-Ho;Seo, Kyung Won;Min, Jae-Seok
    • Journal of Gastric Cancer
    • /
    • 제21권1호
    • /
    • pp.4-15
    • /
    • 2021
  • Recently, endoscopic screening systems have enabled the diagnosis of gastric cancer in the early stages. Early gastric cancer (EGC) is typically characterized by a shallow invasion depth and small size, which can hinder localization of EGC tumors during laparoscopic surgery. Here, we review nine recently reported tumor localization methods for the laparoscopic resection of EGCs. Preoperative dye or blood tattooing has the disadvantage of spreading. Preoperative 3-dimensional computed tomography reconstruction is not performed in real time during laparoscopic gastrectomy. Thus, they are considered to have a low accuracy. Intraoperative portable abdominal radiography and intraoperative laparoscopic ultrasonography methods can provide real-time feedback, but these methods require expertise, and it can be difficult to define the clips in some gastric regions. Despite a few limitations, intraoperative gastrofibroscopy provides real-time feedback with high accuracy. The detection system using an endoscopic magnetic marking clip, fluorescent clip, and radio-frequency identification detection system clip is considered highly accurate and provides real-time feedback; we expect a commercial version of this setup to be available in the near future. However, there is not yet an easy method for accurate real-time detection. We hope that improved devices will soon be developed and used in clinical settings.

Migratory Azygos Lobe: A Case Report

  • Min Suk Choi;Eung-Joong Kim
    • Journal of Chest Surgery
    • /
    • 제56권2호
    • /
    • pp.140-142
    • /
    • 2023
  • The azygos vein sometimes merges abnormally across the right upper lobe of the lung and it hangs at the lower edge of a membranous septum, called the meso-azygos. The septum invaginates the lobe and makes a fissure. The smaller medial part of the right upper lobe is called an azygos lobe. A 16-year-old male patient was diagnosed with right-sided pneumothorax, and a closed thoracostomy was done in the emergency room. During elective wedge resection including the bulla, the meso-azygos, abnormal azygos vein, and azygos lobe were detected. We reviewed the computed tomography images and found that the azygos lobe had re-expanded laterally, not medially, to the meso-azygos after the closed thoracostomy in the emergency room. The patient had been diagnosed with left-sided pneumothorax a year ago, and no one noticed the azygos lobe at that time. We report the intraoperative findings and comparative images of a migratory azygos lobe.