
INTRODUCTION 

Intracranial hemorrhage is a life-threatening crisis that can ap-
pear after an acute traumatic brain injury (TBI). Massive hema-
toma causes a rise in intracranial pressure (ICP), which can result 
in brain injury, a permanent vegetative state, or death. Decom-
pressive craniectomy (DC) is performed to reduce ICP; in rare 
cases, this can result in the appearance and expansion of a con-
tralateral hematoma after surgery. If this possibility is neglected, a 
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poor prognosis may occur [1–5]. 
Imaging is a necessity of the TBI diagnostic process, and com-

puted tomography (CT) is the most significant test in the acute 
posttrauma phase [6]. Due to advances in ultrasound technology 
over the past decade, several authors have well visualized adult 
cerebral arteries, veins, parenchyma, and ventricular systems 
through a transtemporal approach using B-mode ultrasonogra-
phy [7–10].  

Therefore, we hypothesized that transcranial sonography 
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(TCS) during DC procedures could be used to evaluate brain 
anatomy. To test the hypothesis, the consistency between TCS 
during surgery and postoperative CT was evaluated and visual-
ized in terms of the diameter of focal hematoma lesions, lateral 
ventricle, contralateral subdural hematoma (SDH), and midline 
shift (MLS). 

METHODS 

Ethical statements 
We investigated patients who presented to the hospital and un-
derwent DC between January 1, 2017 and April 30, 2020. A ret-
rospective cross-sectional study was performed of 35 patients 
who had a small amount of SDH present on the opposite side in 
the initial CT scan and underwent TCS during surgery. The 
study was approved by the Research Ethics Board of the Pusan 
National University Hospital (No. 2008-003-093). Since both ul-
trasound and CT scans are part of routine practice for patients 
during surgery at our hospital, written informed consent was not 
required. Postoperative CT was evaluated by a neuroradiologist 
and compared with the TCS results. 

Technical methods 
TCS was performed by a single operator using a GE logiqE de-
vice (GE Healthcare, Milwaukee, WI, USA) and a standard ab-
dominal convex phased-array probe with an average median fre-
quency of 4 MHz and abdominal settings. A dynamic range of 45 
to 50 dB was used. After applying a small amount of sterile ultra-
sound gel, the probe was gently placed on the dura mater so that 
the ICP did not increase. Scanning was performed at a depth of 
16 cm, and the entire brain was scanned in B-mode (Fig. 1). 

Midline structure shift 
In the axial plane, the midline was evaluated as the line between 
the two lateral ventricles. After localizing the falx cerebri in the 
frontal lobe, the distance between the septum pellucidum and 
the lateral margin of the right ventricle was measured. The dis-
tance between the septum pellucidum and the lateral margin of 
the left ventricle was measured in the same way (Fig. 2A). The 
difference between the two measured values is the MLS. The 
consistency between CT and TCS was investigated. 

Evaluation of focal hematoma lesions 
Intracerebral hemorrhage (ICH) appears as a homogenous, 
sharply demarcated mass on TCS. We measured the maximum 
diameter of this mass (Fig. 2A). Focal hematoma lesions are di-

vided into low density and high density according to their densi-
ty on CT scans. The maximum diameter of ICH confirmed as 
having high density in the axial plane of the CT scan was mea-
sured (Fig. 2B). We investigated the consistency between CT and 
TCS in evaluating the diameter of the main axis of high-density 
lesions. 

Evaluation of contralateral subdural hematoma lesions 
The depth of the contralateral SDH was measured through intra-
operative TCS and postoperative CT scans (Fig. 3A, B). We com-
pared the depth measurements between the two devices. 

Evaluation of the ventricular system 
In patients with an intact skull, the lateral ventricle was studied 
using the method described by Seidel et al. [11]. By moving the 
ultrasound beam slightly upward from the midbrain plane, the 
frontal horn of the lateral ventricle can be detected. The lateral 
ventricle was always easily visualized by TCS. The distance be-
tween the body of lateral ventricle and septum pellucidum was 
measured (Fig. 2A, B). 

Statistical analysis 
For statistical analysis, MedCalc ver. 18.11.6 (MedCalc Software, 
Ostend, Belgium) was used. To study the consistency between 
CT and TCS in measurements of the MLS, focal lesion size, and 
the size of the lateral ventricles, the paired t-test or Wilcoxon 

Fig. 1. Transcranial sonography was performed during surgery.

Ha et al. Intraoperative transcranial sonography

9www.jtraumainj.orghttps://doi.org/10.20408/jti.2021.0093



Fig. 2. The frontal horns of the lateral ventricle (asterisk) and focal hematoma lesion (arrow) on (A) transcranial sonography and (B) computed 
tomography (CT) are shown. An excellent linear correlation was found between CT and transcranial sonography in the diameter of (C) the focal 
hematoma lesion and (D) ventricle size.  ICH, intracerebral hemorrhage; US, ultrasonograhpy.
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signed-rank test was performed depending on whether the data 
satisfied the assumption of a normal distribution. The consisten-
cy between the techniques was assessed by Bland-Altman plots 
and intraclass correlation coefficients (ICCs), with an ICC of 0.75 
indicating a good correlation. A P-value of less than 0.05 was 
considered to indicate statistical significance. 

RESULTS 

Midline shift 
MLS was found on TCS in 31 cases. All cases were confirmed on 
CT, and a good correlation between these two techniques was 
found (Table 1). The mean difference between the two methods 
was –1.33 mm (95% confidence interval [CI], –2.00 to – 0.65), 
the ICC was 0.96 (95% CI, 0.88 to 0.99), and no systematic bias 
was observed in the Bland-Altman plot (Fig. 4). 

The diameter of the focal hematoma lesion 
In 16 patients, lesions were observed on TCS scans (Fig. 2A). All 
high-density lesions were visualized on CT (Fig. 2B), and a good 
correlation was found between TCS and CT (Table 1). The mean 
diameter difference between the two methods was –2.21 mm 
(95% CI, –4.32 to –0.09), the ICC was 0.99 (95% CI, 0.99 to 1.00), 
and no systematic bias was observed in the Bland-Altman plot 
(Fig. 2C). 

Depth of the contralateral subdural hematoma lesion 
In 35 patients, lesions were observed on TCS scans (Fig. 3A). All 
high-density lesions were visualized on CT (Fig. 3B), and a good 
correlation was found between TCS and CT (Table 1). The mean 
diameter difference between the two methods was – 0.77 mm 
(95% CI, –1.64 to 0.09), the ICC was 0.96 (95% CI, 0.92 to 0.98), 
and no systematic bias was observed in the Bland-Altman plot 
(Fig. 3C). 

Evaluation of the ventricular system (ventricle size) 
A very good correlation was found between TCS and CT (Table 
1). The mean difference between the two methods was –0.07 
mm (95% CI, –0.44 to 0.30), the ICC was 0.92 (95% CI, 0.84 to 
0.96), and no systematic bias was observed in the Bland-Altman 
plot (Fig. 2D). 

DISCUSSION 

It is rare for a new hematoma to form on the contralateral side af-
ter hematoma removal or for an existing hematoma to expand. 
The causes of hematoma growth are rupture of a meningeal ar-
tery branch, low-tension bleeding, or venous laceration that caus-
es a skull fracture [1]. In general, neurological deterioration, pu-
pillary dilation in response to hematoma, seizure, and intractably 
increased ICP are critical signs of de novo hematoma formation 
or volume expansion of a contralateral hematoma after surgery 
[5,12]. Neurosurgeons depend on CT scans after surgery when he-

Table 1. Results of clinical tests

Clinical test TCS CT Mean difference (95% CI) ICC (95% CI) P-valuea)

Midline shift (mm) 5.15±6.23 6.48±6.18 –1.33 (–2.00 to –0.65) 0.96 (0.88 to 0.99) <0.001
Focal hematoma lesion (mm) 17.97±41.08 20.18±47.05 –2.21 (–4.32 to –0.09) 0.99 (0.99 to 1.00) <0.001
Contralateral SDH lesion (mm) 9.04±6.17 9.82±6.72 –0.77 (–1.64 to 0.09) 0.96 (0.92 to 0.98) <0.001
Ventricle size (mm) 5.35±1.87 5.42±2.04 –0.07 (–0.44 to 0.30) 0.92 (0.84 to 0.96) <0.001
Values are presented as mean±standard deviation.
TCS, transcranial sonography; CT, computed tomography; CI, confidence interval; ICC, intraclass correlation coefficient; SDH, subdural hemor-
rhage.
a)Statistically significant ICC.
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matoma formation or expansion is predicted, such as in patients 
with previous contralateral cranial fractures or hematomas or se-
vere brain escape after removal of the ipsilateral hematoma [1]. 

Early identification and decompression of the contralateral he-
matoma can reduce the secondary insult to the normal brain but 
may lead to safety issues related to CT scanning, surgical wound 
closure, and transport to the CT room [1]. Some authors have 
suggested exploratory burr-hole trephination on the other side 
during the first operation [12], but this is regarded as too invasive 
a way to prove the probability of hematoma expansion or forma-
tion. CT during surgery is an excellent diagnostic tool that is 
used at some institutions, but it has many limitations, such as 
economic considerations, preparation and surgical time, and the 
risk of radiation exposure [1]. Therefore, TCS was considered as 
an alternative diagnostic tool for TBI patients during surgery, and 
this study was conducted to confirm the consistency of the re-
sults. 

The main finding of this study was that TCS during surgery 
was effective in evaluating ICH, MLS, contralateral subdural 
hemorrhage, and the dimensions of the ventricular system in pa-
tients with DC, just like CT. With ongoing developments in ul-
trasound technology, TCS has been regarded as a reliable tool to 
evaluate brain parenchyma in patients with an appropriate acous-
tic temporal window [7,8,13,14]. In 1993, Becker et al. [14] first 
reported an accurate functional description of the ultrasound 
portrayal of brain anatomy; subsequently, several authors have 
found similar results, and TCS has been extensively studied in 
many other contexts, such as cerebral perfusion imaging [15–19]. 
However, few reports have described the application of TCS 
during DC surgery [20–22]. 

TCS during surgery has some benefits as a diagnostic tool. 
First, it can provide meaningful images of the brain. Precise func-
tional descriptions of the ultrasound portrayal of brain anatomy 
have been given in the literature. Some reports have suggested 
that low-frequency probes can be used to detect hematoma, in-
termediate line movements, and ventricle enlargement in the 
temporal bone of an intact skull [16,17,23,24]. The quality of the 
lateral images of DC patients is good and the accuracy is not 
compromised by epidural implantation [20–22]. Furthermore, 
after bone flap removal, the frequency of the probe may be high-
er than that of TCS [25]. Thus, an excellent image of the surface 
area of the brain parenchyma can be acquired. Furthermore, in 
the event of a large amount of brain herniation during surgery, 
TCS can be specifically effective in distinguishing various ipsilat-
eral pathologies that require surgery, such as brain hematoma 
with edema or SDH. 

Second, TCS during surgery decreases the time and effort re-
quired for imaging compared to postoperative CT and does not 
need surgical wound closure and transport to the CT room. The 
application of TCS also decreases the risk of patient aggravation 
during transport and reduces the time needed for decision-mak-
ing. 

Third, the apparatus required for TCS during surgery is quick-
ly accessible at most institutions. Ultrasonography is generally 
used by anesthesiologists and can be converted to B-mode ultra-
sonography by adding a probe to the Doppler sonography ma-
chine, which is widely used in neurovascular surgery. Further-
more, TCS has no hazard of radiation exposure to patients or 
health care providers. 

Fourth, when planning an operation to remove a hematoma or 
insert an instrument for intraventricular pressure measurement 
when ICH is confirmed on preoperative CT, most of them use 
navigation CT to determine the location of the lesion or ventricle 
before and during surgery [26]. However, in patients who have 
undergone DC, there may be an error in the navigation system 
due to the phase difference of the parenchyma between the CT 
image before surgery and the skull after removal. In this case, the 
location of the hematoma can be reconfirmed using TCS. Also, 
the insertion of an intraventricular pressure measurement device 
can be safely performed under TCS guidance. 

However, a disadvantage of TCS during surgery is that the im-
age quality is limited compared to that of CT. Caricato et al. [23] 
described the nonvisualization of low-density ischemic lesions 
and the posthemorrhage stage in CT scans in 11 patients moni-
tored using bedside TCS. Niesen et al. [24] reported that three 
out of 25 SDH cases (12%) were missed when using TCS as a 
poor temporal bone window. TCS also has more limited visibility 
than CT, so the operator must tilt and move the probe to obtain a 
complete image of the brain [23,24]. As reported by Kim et al. 
[1], an epidural hematoma on the opposite side of the frontal 
lobe may be missed if clinicians do not anticipate the presence of 
a hematoma due to the presence of an existing left frontal frac-
ture. Since TCS is a user-dependent technique, the operator 
should be properly trained in accurate evaluation of the brain. 

Therefore, TCS cannot completely substitute for CT. Neverthe-
less, we suggest that TCS during surgery may be an effective di-
agnostic tool, especially in cases of TBI when time-consuming 
assessments are limited because of possible systemic compromise 
and the need for prompt decision-making. Prospective studies 
are needed to improve our understanding of the usefulness and 
limitations of TCS compared to CT. 

In this study, due to the small number of enrolled patients, 
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there are some limitations in comparing CT and TCS. We com-
pared and analyzed MLS, focal ICH, contralateral SDH, and ven-
tricle size. The results of TCS showed statistical significance 
when compared with CT. TCS during surgery is considered an 
effective diagnostic tool for the detection of intraoperative paren-
chymal changes in TBI patients. 
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