• Title/Summary/Keyword: Intracerebroventricular

Search Result 95, Processing Time 0.026 seconds

Neural Tissue-Specific Epidermal Growth Factor (EGF)-like Domain Containing Protein, NELL2, Plays on Important Role in the Control Regulation of Puberty Onset in the Female Rat Hypothalamus

  • Ha, Chang-Man;Kang, Hae-Mook;Lee, Byung-Ju
    • Animal cells and systems
    • /
    • v.4 no.4
    • /
    • pp.367-373
    • /
    • 2000
  • In the present study we determined if NELL2, a neural tissue-specific protein containing 6 epidermal growth factor (EGF)-like repeat domains, plays an important role in the regulation of puberty initiation in the rat hypothalamus. We origin811y found that NELL2 is a new estrogen-responsive gene in hypothalami derived from estrogen-sterilized and control rats using a PCR differential display. In the 40-day-old female rat hypothalamus, NELL2 was up-regulated by neonatal estrogen treatment. In situ hybridization histochemistry showed that NELL2 is very abundant in the ventromedial hypothalamic nucleus that is responsible for the control of sex behavior. NELL2 mRNA level in the medial basal hypothalamus showed a dramatic increase before female puberty onset, which suggests that NELL2 may be involved in the process regulating female puberty onset. We attemped to block NELL2 synthesis with intracerebroventricular injection of an antisense oligodeoxynucleotide (ODN) to the NELL2 mRNA, and examined its effect on the puberty onset of the female rat. The antisense ODN significantly delayed puberty initiation determined by vaginal opening. In summary, NELL2 may play an important role in the regulation of female puberty onset.

  • PDF

Presence of Pituitary Specific Transcription Factor Pit-1 in the Rat Brain: Intracerebroventricular Administration of Antisense Pit-1 Oligodeoxynucleotide Decreases Brain Prolactin mRNA Level

  • Tae Woo Kim;Hyun-Ju Kim;Byung Ju Lee
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.311-317
    • /
    • 1999
  • Prolactin (PRL) was reported to be locally synthesized in many brain areas including the hypothalamus, thalamus (TH) and hippocampus (HIP). In the pituitary lactotrophs, PRL synthesis is dependent upon a pituitary-specific transcription factor, Pit-1. In the present study, we attempted to identify Pit-1 or Pit-1-like protein in brain areas known as the synthetic sites of PRL. Reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot analysis showed the same Pit-1 transcripts in brain areas such as the medial basal hypothalamus (MBH), preoptic area (POA), TH, and HIP with the Pit-1 transcripts in the anterior pituitary (AP). Electrophoretic mobility shift assay (EMSA) was run with nuclear protein extracts from brain tissues using a double strand oligomer probe containing a putative Pit-1 binding domain. Shifted bands were found in EMSA results with nuclear proteins from MBH, POA, TH and HIP. Specific binding of the Pit-1-like protein was further confirmed by competition with an unlabeled cold probe. Antisense Pit-1 oligodeoxynucleotide (Pit-1 ODN), which was designed to bind to the Pit-1 translation initiation site and block Pit-1 biosynthesis, was used to test Pit-1 dependent brain PRL transcription. Two nmol of Pit-1 ODN was introduced into the lateral ventricle of a 60-day old male rat brain. RNA blot hybridization and in situ hybridization indicated a decrease of PRL mRNA signals by the treatment of Pit-1 ODN. Taken together, the present study suggests that Pit-1 may play an important role in the transcriptional regulation of local PRL synthesis in the brain.

  • PDF

Identification of Genes Involved in the Onset of Female Puberty of Rat

  • Eun Jung Choi;Byung Ju Lee
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.319-329
    • /
    • 1999
  • Onset of female puberty follows a series of prepubertal cellular and molecular events including changes of synaptic plasticity, synthetic and releasing activity and gene expression. Dramatic increase of gonadal steroid level is one of the most prominent changes before the onset of puberty. Based on the importance of steroid feedback upon the hypothalamus, we adopted an estrogen sterilized rat (ESR) model where 100 ng of 17$\eta$-estradiol were administered into neonatal pubs for 7 days after birth. To identify genes involved in the onset of female puberty, we applied PCR differential display using RNA samples derived from ESR and control rat hypothalami. About 100 out of more than 1000 RNA species examined displayed differential expression patterns between a 60-day old control rat and ESR. Sequence analysis of differentially amplified PCR products showed homology with genes such as mouse kinesin superfamily-associated protein 3 (KAP3) and several cDNAs previously described by others in mouse and human tissues. Several gene products such as 2-1 and 8-1 corresponded to novel DNA sequences. We analyzed mRNA levels of KAP3, 2-1 and 8-1 genes in the hypothalami derived from neonatal, 6-, 28-, 31-, and 40-day old rats. Northern blot analysis showed that mRNAs of KAP3, 2-1 and 8-1 genes were markedly increased before the initiation of puberty. Neonatal treatment of estrogen clearly inhibited prepubertal increases in KAP3, 2-1 and 8-1 mRNA levels. Therefore, these genes may play important roles in the initiation of hypothalamic puberty. In addition, intracerebroventricular (icv) injection of antisense KAP3 oligodeoxynucleotide (ODN) clearly delayed puberty initiation determined by vaginal opening, which further confirmed that KAP3 plays an important role in the regulation of puberty initiation.

  • PDF

Mechanisms Controlling Feed Intake in Large-type Goats Fed on Dry Forage

  • Sunagawa, K.;Ooshiro, T.;Murase, Y.;Hazama, R.;Nagamine, I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1182-1189
    • /
    • 2007
  • An intracerebroventricular (ICV) infusion of somatostatin 1-28 (SRIF) was used as a thirst-controlling peptide antagonist to investigate whether or not thirst-controlling peptides are involved in the significant decrease in feed intake during the initial stages of feeding large-type goats on dry forage. A continuous ICV infusion of SRIF was conducted at a small dose of $4{\mu}g$ ml/h for 27 h from day 1 to day 2. Goats (n = 5) were fed roughly crushed alfalfa hay cubes for 2 h twice daily and water was given ad libitum. Feed intake was measured during ICV infusion of artificial cerebrospinal fluid (ACSF) and SRIF. The feed intake during SRIF infusion increased significantly compared to that during ACSF infusion. In comparison to the ACSF treatment, plasma osmolality during the SRIF treatment significantly decreased during the first half of the 2 h feeding period. The factor causing the decrease in plasma osmolality during the ICV infusion of SRIF was a decrease in plasma Na, K, Cl, and Mg concentrations. In comparison to the ACSF infusion treatment, parotid saliva secretion volumes during the 2 h feeding period in the SRIF infusion treatment were significantly larger. While there was no significant difference in cumulative water intake (thirst levels) between the SRIF and the ACSF treatments upon conclusion of the 2 h feeding period, based on the plasma osmolality results it is thought that thirst level increases brought about by alfalfa hay cube feeding in the first half of the feeding period were reduced. It is thought that the somatostatin-induced increases in feed intake during the 2 h feeding period in the present experiment were caused by decreases in plasma osmolality brought about by the somatostatin infusion. As a result, it is suggested that the significant decrease in feed intake during the initial stages of feeding in large-type goats given roughly crushed alfalfa hay cubes, was due to the actions of thirst-controlling peptides.

The Role of Brain Somatostatin in the Central Regulation of Feed, Water and Salt Intake in Sheep

  • Sunagawa, Katsunori;Weisinger, Richard S.;McKinley, Michael J.;Purcell, Brett S.;Thomson, Craig;Burns, Peta L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.929-934
    • /
    • 2001
  • The physiological role of brain somatostatin in the central regulation of feed intake in sheep was investigated through a continuous intracerebroventricular (ICV) infusion of somatostastin 1-28 (SRIF) at a small dose of $5{\mu}g/0.2ml/hr$ for 98.5 hours from day 1 to day 5. Sheep (n=5) were fed for 2 hours once a day, and water and 0.5 M NaCI solution were given ad libitum. Feed, water and salt intake were measured during ICV infusion of artificial cerebrospinal fluid (CSF) and SRIF. The feed intake during SRIF infusion on days 2 to 5 increased significantly compared to that during CSF infusion. Water intake, when compared to that during CSF infusion, only increased significantly on day 4. NaCI intake during SRIF infusion was not different from that during CSF infusion. Mean arterial blood pressure (MAP) and heart rate during SRIF infusion were not different from those during CSF infusion. The plasma concentrations of Na, K, Cl, osmolality and total protein during SRIF infusion were also not different from those values during CSF infusion.There are two possible mechanisms, that is, the suppression of brain SRIF on feed suppressing hormones and the direct actions on brain mechanisms controlling feed intake, explaining how SRIF works in the brain to bring about increases in feed intake in sheep fed on hay. The results indicate that brain SRIF increases feed intake in sheep fed on hay.

A Central Pressor Response to Endogenous Nitric Oxide Synthesis Inhibition in Anesthetized Rats

  • Moon, Sung-Ho;Yang, Min-Joon;Oh, Seung-Ho;Kim, Mi-Won;Yoo, Kwang-Jay;Lee, Jong-Eun;Jun, Jae-Yeoul;Yeum, Cheol-Ho;Yoon, Pyung-Jin
    • The Korean Journal of Physiology
    • /
    • v.28 no.2
    • /
    • pp.197-202
    • /
    • 1994
  • The present study was aimed to determine if endogenous L-arginine-nitric oxide (NO) pathway has central, rather than peripheral, mechanisms in blood pressure regulation. Arterial blood pressure and heart rate responses to acute inhibition of the t-arginine-NO pathway were examined in rats anesthetized with thiopental (50 mg/kg, IP). An intracerebroventricular (ICV) cannula was placed in the left lateral ventricle. The right femoral artery was cannulated to measure arterial blood pressure and the vein to serve as an infusion route. $N^G-nitro-L-arginine$ methyl ester (L-NAME) was infused either intracerebroventricularly or intravenously. ICV infusion $(1.25\;{\mu}L/min)$ of L-NAME $(20\;or\;100\;{\mu}g/kg)$ per minute for 60 min) increased the mean arterial pressure and heart rate. Plasma renin concentrations(PRC) were significantly lower in L-NAME-infused group than in the control. L-Arginine $(60\;{\mu}g/min,\;ICV)$ prevented the pressor response to ICV L-NAME. The pressor response was not affected by simultaneous intravenous infusion of saralasin, but was abolished by hexamethonium treatment. Intravenous infusion $(40\;{\mu}L/min,\;10{\sim}100\;{\mu}g/kg\;per\;minute\;for\;60\;min)$ also increased blood pressure, while it decreased heart rate. These results indicate that endogenous L-arginine-NO pathway has separate central and peripheral mechanisms in regulating the cardiovascular function. The central effect may not be mediated via activation of renin-angiotensin system, but via, at least in part, activation of the sympathetic outflow.

  • PDF

Korean Mistletoe (Viscum album var. coloratum) Inhibits Amyloid β Protein (25-35)-induced Cultured Neuronal Cell Damage and Memory Impairment

  • Jang, Ji Yeon;Kim, Se-Yong;Song, Kyung-Sik;Seong, Yeon Hee
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.134-140
    • /
    • 2015
  • The present study aims to investigate the effect of methanol extract of Korean mistletoe (KM; Viscum album var. coloratum), on amyloid $\beta$ protein ($A\beta$) (25-35), a synthetic 25-35 amyloid peptide, -induced neurotoxicity in cultured rat cerebral cortical neurons and memory impairment in mice. Exposure of cultured neurons to $10{\mu}M$ $A\beta$ (25-35) for 24 h induced a neuronal cell death, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. KM (10, 30 and $50{\mu}g/ml$) significantly inhibited the $A\beta$ (25-35)-induced apoptotic neuronal death. KM ($50{\mu}g/ml$) inhibited 10 μM Aβ (25-35)-induced elevation of intracellular calcium concentration ([Ca2+]i), which was measured by a fluorescent dye, Fluo-4 AM. Glutamate release into medium and generation of reactive oxygen species (ROS) induced by $10{\mu}M$ $A\beta$ (25-35) were also inhibited by KM (10, 30 and $50{\mu}g/ml$). These results suggest that KM may mitigate the $A\beta$ (25-35)-induced neurotoxicity by interfering with the increase of [Ca2+]i and then inhibiting glutamate release and generation of ROS in cultured neurons. In addition, orally administered KM (25 and 50 mg/kg, 7 days) significantly prevented memory impairment induced by intracerebroventricular injection of $A\beta$ (25-35) (8 nmol). Taken together, it is suggested that anti-dementia effect of KM is due to its neuroprotective effect against $A\beta$ (25-35)-induced neurotoxicity and that KM may have therapeutic role in prevention of the progression of Alzheimer's disease.

Kainic Acid-induced Neuronal Death is Attenuated by Aminoguanidine but Aggravated by L-NAME in Mouse Hippocampus

  • Byun, Jong-Seon;Lee, Sang-Hyun;Jeon, Seong-Ho;Kwon, Yong-Soo;Lee, Hee-Jae;Kim, Sung-Soo;Kim, Young-Myeong;Kim, Myong-Jo;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.265-271
    • /
    • 2009
  • Nitric oxide (NO) has both neuroprotective and neurotoxic effects depending on its concentration and the experimental model. We tested the effects of NG-nitro-L-arginine methyl ester (L-NAME), a nonselective nitric oxide synthase (NOS) inhibitor, and aminoguanidine, a selective inducible NOS (iNOS) inhibitor, on kainic acid (KA)-induced seizures and hippocampal CA3 neuronal death. L-NAME (50 mg/kg, i.p.) and/or aminoguanidine (200 mg/kg, i.p.) were administered 1 h prior to the intracerebroventricular (i.c.v.) injection of KA. Pretreatment with L-NAME significantly increased KA-induced CA3 neuronal death, iNOS expression, and activation of microglia. However, pretreatment with aminoguanidine significantly suppressed both the KA-induced and L-NAME-aggravated hippocampal CA3 neuronal death with concomitant decreases in iNOS expression and microglial activation. The protective effect of aminoguanidine was maintained for up to 2 weeks. Furthermore, iNOS knockout mice ($iNOS^{-1-}$) were resistant to KA-induced neuronal death. The present study demonstrates that aminoguanidine attenuates KA-induced neuronal death, whereas L-NAME aggravates neuronal death, in the CA3 region of the hippocampus, suggesting that NOS isoforms play different roles in KA-induced excitotoxicity.

The Role of Corticotropin-Releasing Factor and Urocortin in Brain Mechanisms Controlling Feed Intake of Sheep

  • Sunagawa, K.;Weisiger, R.S.;McKinley, M.J.;Purcell, B.S.;Thomson, C.;Burns, P.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1529-1535
    • /
    • 2000
  • The aim of the present study was to determine whether brain corticotropin-releasing factor (CRF) and a new peptide, urocortin (UCN) have a direct action in brain mechanisms controlling feed, water and salt intake in sheep. We gave a continuous intracerebroventricular (ICV) infusion of the peptide at a small dose of $5{\mu}g/0.2ml/hr$ for 98.5 hrs from day 1 to day 5 in sheep not exposed to stress. Feed and water intake during ICV infusion of CRF or UCN decreased significantly compared to those during artificial cerebrospinal fluid (CSF) infusion. NaCl intake during infusion of CRF or UCN was the same as that during CSF infusion. Mean carotid arterial blood pressure (MAP) and heart rate during ICV infusion of CRF or UCN were not significantly different from that during CSF infusion. On the other hand, the plasma glucose concentration during ICV infusion of CRF or UCN tended to be higher than that during CSF infusion. These observations indicate that decreased feed intake induced by CRF and UCN infusion is not mediated by the activation of both the pituitary-adrenal axis and the sympathetic nervous system. The results suggested that brain CRF and UCN act directly in brain mechanisms controlling ingestive behavior to decrease feed and water intake, but do not alter salt intake in sheep.

Curcumin Attenuates Gliall Cell Activation But Cannot Suppress Hippocampal CA3 Neuronal Cell Death in i.c.v. Kanic Acid Injection Model

  • Cho, Jae-Young;Kong, Pil-Jae;Chun, Wan-Joo;Moon, Yeo-Ok;Park, Yee-Tae;Lim, So-Young;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.307-310
    • /
    • 2003
  • Kainic acid (KA) is a structural analogue of glutamate that interacts with specific presynaptic and postsynaptic receptors to potentiate the release and excitatory actions of glutamate. Systemic or intracerebroventricular (i.c.v.) administration of KA to experimental animals elicits multifocal seizures with a predominantly limbic localization, and results in neuronal death of cornu ammonia 1 (CA1), reactive gliosis and biochemical changes in the hippocampus and other limbic structures. Several lines of evidence suggest that reactive oxygen species (ROS) play a pivotal role in the pathogenesis of excitotoxic death by KA. Curcumin has been known to possess anti-oxidative and anti-inflammatory activities. In this study, the effects of curcumin on KA induced hippocampal cell death, reactive gliosis and biochemical changes in reactive glia were investigated by immunohistochemical methods. Our data demonstrated that curcumin attenuated KA-induced astroglial and microglial activation although it did not protect KA-induced hippocampal cell death.