• Title/Summary/Keyword: Intracellular proteinase

Search Result 11, Processing Time 0.019 seconds

Intracellular Posttranslational Modification of Aspartyl Proteinase of Candida albicans and the Role of the Glycan Region of the Enzyme

  • 나병국;송철용
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.218-218
    • /
    • 2002
  • Using two drugs, tunicamycin and brefeldin A, which affect protein processing, we investigated the intracellular processing mechanism of secreted aspartyl proteinase 1 (SAPl) of Candide albicans. Three intracellular forms of SAPI were detected by immunoblotting using menoclonal antibody (MAb) CAPl. Their molecular weights were approximately 40, 41 and 45 kDa, respectively. The 41 kDa protein is a glycoprotein and may be the same as the extracellular form judging by its molecular mass. The 40 kDa protein was the unglycosylated form and its molecular mass coincided with deglycosylated SAPl and the 45 kDa protein was also the unglycosylated form. Neither the 40 and 45 kDa proteins were detected in the culture supernatant of C. albicans. These suggested that the 40 and 45 kDa proteins might be intracellular precursor forms of SAPI. These results show that SAPI is translated as a 45 kDa precusor form in the endoplasmic reticulum and the 45 kDa precursor farm undergoes proteolytic cleavage after translocation into the Golgi apparatus, generating the 40 kDa precursor form. This 40 kDa precursor is converted into a 41 kDa mature form through glycosylation in the Golgi apparatus. The mature form of the 41 kDa protein is sorted into secretary vesicles and finally released into the extracellular space through membrane fusion. When the glycan region of SAPl was digested with N-glycosidase F, both stability and activity of the enzyme decreased. These results indicate that the glycan attached to the enzyme may, at least in parti be related to enzyme stability and activity.

Intracellular Posttranslational Modification of Aspartyl Proteinase of Candida albicans and the Role of the Glycan Region of the Enzyme

  • Na, Byung-Kuk;Song, Chul-Yong
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.218-223
    • /
    • 2000
  • Using two drugs, tunicamycin and brefeldin A, which affect protein processing, we investigated the intracellular processing mechanism of secreted aspartyl proteinase 1 (SAPl) of Candide albicans. Three intracellular forms of SAPI were detected by immunoblotting using menoclonal antibody (MAb) CAPl. Their molecular weights were approximately 40, 41 and 45 kDa, respectively. The 41 kDa protein is a glycoprotein and may be the same as the extracellular form judging by its molecular mass. The 40 kDa protein was the unglycosylated form and its molecular mass coincided with deglycosylated SAPl and the 45 kDa protein was also the unglycosylated form. Neither the 40 and 45 kDa proteins were detected in the culture supernatant of C. albicans. These suggested that the 40 and 45 kDa proteins might be intracellular precursor forms of SAPI. These results show that SAPI is translated as a 45 kDa precusor form in the endoplasmic reticulum and the 45 kDa precursor farm undergoes proteolytic cleavage after translocation into the Golgi apparatus, generating the 40 kDa precursor form. This 40 kDa precursor is converted into a 41 kDa mature form through glycosylation in the Golgi apparatus. The mature form of the 41 kDa protein is sorted into secretary vesicles and finally released into the extracellular space through membrane fusion. When the glycan region of SAPl was digested with N-glycosidase F, both stability and activity of the enzyme decreased. These results indicate that the glycan attached to the enzyme may, at least in parti be related to enzyme stability and activity.

  • PDF

Biodegradation of Organophosphate Pesticide Using Recombinant Cyanobacteria with Surface- and Intracellular-Expressed Organophosphorus Hydrolase

  • Chungjatupornchai, Wipa;Fa-Aroonsawat, Sirirat
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.946-951
    • /
    • 2008
  • The opd gene, encoding organophosphorus hydrolase (OPH) from Flavobacterium sp. capable of degrading a wide range of organophosphate pesticides, was surface- and intracellular-expressed in Synechococcus PCC7942, a prime example of photoautotrophic cyanobacteria. OPH was displayed on the cyanobacterial cell surface using the truncated ice nucleation protein as an anchoring motif. A minor fraction of OPH was displayed onto the outermost surface of cyanobacterial cells, as verified by immunostaining visualized under confocal laser scanning microscopy and OPH activity analysis; however, a substantial fraction of OPH was buried in the cell wall, as demonstrated by proteinase K and lysozyme treatments. The cyanobacterial outer membrane acts as a substrate (paraoxon) diffusion barrier affecting whole-cell biodegradation efficiency. After freeze-thaw treatment, permeabilized whole cells with intracellular-expressed OPH exhibited 14-fold higher bioconversion efficiency ($V_{max}/K_m$) than that of cells with surface-expressed OPH. As cyanobacteria have simple growth requirements and are inexpensive to maintain, expression of OPH in cyanobacteria may lead to the development of a low-cost and low-maintenance biocatalyst that is useful for detoxification of organophosphate pesticides.

Effect of N-sources and NaCl Concentrations in Media on the Intra-and Extracellular Proteinase Activities of Streptococcus cremoris $ML_4$ and Streptococcus lactis $ML_8$ (Streptococcus cremoris $ML_4$ 및 Streptococcus lactis $ML_8$의 생육중 질소원과 염농도가 세포내 및 세포외 프로테이나제 역가에 미치는 영향)

  • Chang, Hae-Choon;Lee, Hyong-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.86-91
    • /
    • 1989
  • To investigate the effect of NaCl concentration and nitrogen sources in the medium for the Streptococci on the intra- and extracellular proteinase(ICP and ECP) which have been known as one of the major causes for the bitter peptide formation, Streptococcus lactis $ML_8$ and Streptococcus cremoris $ML_4$ strains were incubated at 0-4% NaCl in the medium and Na-caseinate as a nitrogen source 0-100%, and the cell growth, ICP and ECP activities were analyzed. As the concentration of the NaCl in the medium increased, the growth and ECP activity decreased but the ICP $activity/10^{10}$ cells increased on the contrary. This implied that the NaCl in the medium affects only the ECP which is associated mainly to the cell wall and cell membrane but not the ICP activity. When the content of the caseinate instead of other low molecular nitrogen sources were increased in the medium, the cell growth was lowered while the ECP activities increased probably by induction of proteinase production.

  • PDF

Inhibitory Effect of Ginkgolide B on Platelet Aggregation in a cAMP- and cGMP-dependent Manner by Activated MMP-9

  • Cho, Hyun-Jeong;Nam, Kyung-Soo
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.678-683
    • /
    • 2007
  • Extracts from the leaves of the Ginkgo biloba are becoming increasingly popular as a treatment that is claimed to reduce atherosclerosis, coronary artery disease, and thrombosis. In this study, the effect of ginkgolide B (GB) from Ginkgo biloba leaves in collagen (10 ${\mu}g/ml$)-stimulated platelet aggregation was investigated. It has been known that human platelets release matrix metallo-proteinase-9 (MMP-9), and that it significantly inhibited platelet aggregation stimulated by collagen. Zymographic analysis confirmed that pro-MMP-9 (92-kDa) was activated by GB to form an MMP-9 (86-kDa) on gelatinolytic activities. And then, activated MMP-9 by GB dose-dependently inhibited platelet aggregation, intracellular $Ca^{2+}$ mobilization, and thromboxane $A_2$ ($TXA_2$) formation in collagen-stimulated platelets. Activated MMP-9 by GB directly affects down-regulations of cyclooxygenase-1 (COX-1) or $TXA_2$ synthase in a cell free system. In addition, activated MMP-9 significantly increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have the anti-platelet function in resting and collagen-stimulated platelets. Therefore, we suggest that activated MMP-9 by GB may increase the intracellular cAMP and cGMP production, inhibit the intracellular $Ca^{2+}$ mobilization and $TXA_2$ production, thereby leading to inhibition of platelet aggregation. These results strongly indicate that activated MMP-9 is a potent inhibitor of collagen-stimulated platelet aggregation. It may act a crucial role as a negative regulator during platelet activation.

A possible mechanism responsible for translocation and secretion an alkaliphilic bacillus sp. S-1 pullulanase

  • Shim, Jae-Kyoung;Kim, Kyoung-Sook;Kim, Cheorl-Ho
    • Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.213-221
    • /
    • 1997
  • The secretion of the alkaliphilic Bacillus sp. S-1 extracellular pullulanase involves translocation across the cytoplasmic membrane of the Gram-positive bacterial cell envelope. Translocation of the intracellular pullulanase PUL-I, was traced to elucidate the mechanism and pathway of protein secretion from an alkaliphilic Bacillus sp. S-1. Pullulanase could be slowly bue quantitatively released into the medium during growth of the cells in medium contianing proteinase K. The released pullulanase lacked the N-terminal domain. The N-terminus is the sole membrane anchor in the pullulanase protein and was not affected by proteases, confirming that it is not exposed on the cell surface. Processing of a 180,000M$\_$r/ pullulanase to a 140,000M$\_$r/ polypeptide has been demonstrated in cell extracts using antibodies raised against 140,000M$\_$r/ extracellular form. Processing of the 180,000 M$\_$r/ protein occured during the preparation of extracts in an alkaline pH condition. A modified rapid extraction procedure suggested that the processing event also occured in vivo. Processing apparently increased the activity of pullulanase. The western blotting analysis with mouse anti-serum against 140-kDa extracellular pullulanase PUL-E showed that PUL-I is processed into PUL-X via intermediate form of PUL-E. Possible explanationa for the translocation are discussed.

  • PDF

Thrombin Induced Apoptosis through Calcium-Mediated Activation of Cytosolic Phospholipase A2 in Intestinal Myofibroblasts

  • Mi Ja Park;Jong Hoon Won;Dae Kyong Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.59-67
    • /
    • 2023
  • Thrombin is a serine protease that participates in a variety of biological signaling through protease-activated receptors. Intestinal myofibroblasts play central roles in maintaining intestinal homeostasis. In this study, we found that thrombin-induced apoptosis is mediated by the calcium-mediated activation of cytosolic phospholipase A2 in the CCD-18Co cell. Thrombin reduced cell viability by inducing apoptosis and proteinase-activated receptor-1 antagonist attenuated thrombin-induced cell death. Endogenous ceramide did not affect the cell viability itself, but a ceramide-mediated pathway was involved in thrombin-induced cell death. Thrombin increased intracellular calcium levels and cytosolic phospholipase A2 activity. The ceramide synthase inhibitor Fumonisin B1, intracellular calcium chelator BAPTA-AM, and cytosolic phospholipase A2 inhibitor AACOCF3 inhibited thrombin-induced cell death. Thrombin stimulated arachidonic acid release and reactive oxygen species generation, which was blocked by AACOCF3, BAPTA-AM, and the antioxidant reagent Trolox. Taken together, thrombin triggered apoptosis through calcium-mediated activation of cytosolic phospholipase A2 in intestinal myofibroblasts.

Characterization of the Antagonistic Activity against Lactobacillus plantarum and Induction of Bacteriocin Production (김치로부터 Lactobacillus plantarum 생육저해 박테리오신 생산균주의 분리 및 박테리오신 생산의 유도효과)

  • Yang, Eun-Ju;Chang, Ji-Yoon;Lee, Hyong-Joo;Kim, Jeong-Hwan;Chung, Dae-Kyun;Lee, Jong-Hoon;Chang, Hae-Choon
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.311-318
    • /
    • 2002
  • A new bacteriocin producing lactic acid bacteria having antagonistic activity against Lactobacillus plantarum, was isolated from Kimchi. It was identified as Leuconostoc mesenteroides, and designated as Leuconostoc mesenteroides B7. The bacteriocin from Leuconostoc mesenteroides B7 named as bacteriocin B7 was stable in the pH range $2.5{\sim}9.5$. Bacteriocin B7 was active over a wide temperature range from $4^{\circ}C$ to $120^{\circ}C$. It was inactivated by proteinase K, trypsin, ${\alpha}-chymotrypsin$, and protease treatments indicating its proteinous nature. Tricine-SDS-PAGE of the purified bacteriocin B7 showed the presence of a single band, having a molecular mass of about 3,500 dalton. Mixed culture of the producer and the indicator, Lb. plantarum KFRI 464 or Lb. delbruekii KFRI 347, increased production of bacteriocin B7. This result suggested the presence of bacteriocin inducing factor in the indicator strain. The inducing factor was localized in cell debris and intracellular faction of the indicator cell, Lb. plantarum KFRI 464. Treatment of the inducing factor with proteinase K destroyed inducing activity. This result strongly suggested that the inducing factor is a protein.

Enhancement of Bacteriocin Production by Bacillus subtilis cx1 in the Presence of Bacillus subtilis ATCC6633 (Bacillus subtilis ATCC6633이 Bacillus subtilis cx1의 박테리오신 생산에 미치는 유도효과)

  • Chang Mi;Chang Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.221-227
    • /
    • 2006
  • BSCX1 was an antimicrobial peptide produced by Bacillus subtilis cx1. Attempts were made to determine the location of inducing factor in the bacteriocin-sensitive cell affecting bacteriocin BSCX1 production. Mixed culture of the bacteriocin producer strain B. subtilis cx1 and its sensitive strain B. subtilis ATCC6633, increased production of bacteriocin BSCX1. The result suggested the presence of a bacteriocin inducing factor in the sensitive strain. The inducing factor was localized in the cell debris and intracellular fraction of B. subtilis ATCC6633. Bacteriocin BSCX1 inducing factor was found to be highly stable in the pH range 2.5-9.5, but inactivated within 3h over $50^{\circ}C$, and treatment with proteinase K destroyed its inducing activity, this result suggested that the inducing factor should be a proteinaceous nature.

Two- Dimensional Electrophoresis Analysis of Proteins; Bacillus subtilis LTD and Its Antifungal Activity Deficient Mutant

  • Lee, Young-Keun;Dinh, Le Thi;Jang, Yu-Sin;Chung, Hye-Young;Chang, Hwa-Hyoung
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.487-493
    • /
    • 2004
  • To investigate the antifungal activity related protein in pesticidal bacteria, a bacterial strain LTD was isolated from soil collected at Gimje in Jeonbuk province, Korea, and identified as Bacillus subtilis LTD based on a API50 CHB kit and 168 rDNA sequencing. It has an antifungal activity against 9 plant pathogenic fungi in a paper disc assay. The antifungal activity- deficient mutant, B. subtilis mLTD was induced at a 5 kGy dose of $^{60}Co$ gamma radiation. Using the two-dimensional electrophoresis and the matrix assisted laser desorption ionization time-of-flight mass spectrometry, the comparison analysis of proteins between the wild and mutant were performed. A major intracellular serine proteinase IspA (MW: 32.5 kDa), a NAD (P) H dehydrogenase (MW: 20.0 kDa), and a stage II sporulation protein AA, SpoIIAA (MW: 14.3kDa) were detected only in the B. subtilis LTD. These results suggested that the functions of these proteins found only in the B. subtilis LTD could. be closely related to the antifungal activity against plant pathogenic fungi.