Browse > Article

Enhancement of Bacteriocin Production by Bacillus subtilis cx1 in the Presence of Bacillus subtilis ATCC6633  

Chang Mi (Department of Food and Nutrition, Chosun University)
Chang Hae-Choon (Department of Food and Nutrition, Chosun University)
Publication Information
Microbiology and Biotechnology Letters / v.34, no.3, 2006 , pp. 221-227 More about this Journal
Abstract
BSCX1 was an antimicrobial peptide produced by Bacillus subtilis cx1. Attempts were made to determine the location of inducing factor in the bacteriocin-sensitive cell affecting bacteriocin BSCX1 production. Mixed culture of the bacteriocin producer strain B. subtilis cx1 and its sensitive strain B. subtilis ATCC6633, increased production of bacteriocin BSCX1. The result suggested the presence of a bacteriocin inducing factor in the sensitive strain. The inducing factor was localized in the cell debris and intracellular fraction of B. subtilis ATCC6633. Bacteriocin BSCX1 inducing factor was found to be highly stable in the pH range 2.5-9.5, but inactivated within 3h over $50^{\circ}C$, and treatment with proteinase K destroyed its inducing activity, this result suggested that the inducing factor should be a proteinaceous nature.
Keywords
B. subtilis cx1; B. subtilis ATCC6633; bacteriocin inducing factor;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Barefoot, S. F., Y. R. Chen, T. A. Bodine, M. Y. Shearer, and M. D. Hughes. 1994. Identification and purification of a protein that induces production of the Lactobacillus acidophilus bacteriocin Lactacin B. Appl. Environ. Microbiol. 60: 3522-3528
2 Diep, D. B., L. S. Havarsein, and I. F. Nes. 1995. A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol. Microbiol. 18: 631-639   DOI   ScienceOn
3 Kim, S. I., J. Y. Chang, I. C. Kim, and H. C. Chang. 2001. Characterization of bacteriocin from Bacillus subtilis cx1. Kor. J. Appl. Microbiol. Biotechnol. 29: 50-55
4 Mah, J. H., K. S. Kim, J. H. Park, M. W. Byun, Y. B. Kim, and H. J. Hwang. 2001. Bacteriocin with a broad antimicrobial spectrum, produced by Bacillus sp. isolated from kimchi. J. Microbiol. Biotechnol. 11: 577-584
5 Paik, H. D., N. K. Lee, K. H. Lee, Y. I. Hwang, and J. G. Pan. 2000. Identification and partial characterization of cerein BS229, a bacteriocin produced by Bacillus cereus BS229. J. Microbiol. Biotechnol. 10: 195-200
6 Sip, A., W. Grajek, and P. Boyaval. 1998. Enhancement of bacteriocin production by Carnobacterium divergens AS7 in the presence of a bacteriocin-sensitive strain Carnobacterium piscicola. Int. J. Food Microbiol. 42: 63-69   DOI   ScienceOn
7 Kim, S. I., I. C. Kim, and H. C. Chang. 1999. Isolation and identification of antimicrobial agent producing microorganisms and sensitive strain from soil. J. Kor. Soc. Food Sci. Nutr. 28: 526-533   과학기술학회마을
8 Lee, S. H. and Y. S. Lim. 1997. Antimicrobial effects of schizandra chinensis extract against Listeria monocytogenes. Kor. J. Appl. Microbiol. Biotechnol. 25: 442-447
9 Kuiper, O. P., P. G. de Ruyter, M. Kleerebezem, and W. M. de Vos. 1998. Quorum sensing-controlled gene expression in lactic acid bacteria. J. Bacteriol. 64: 15-21
10 Franz, C. M. A. P., M. E. Stiles, and M. J. Belkum. 2000. Simple method to identify bacteriocin induction peptides and to auto-induce bacteriocin production at low cell density. FEMS Microbiol. Lett. 186: 81-185
11 Park, S. Y., Y. J. Yang, Y. B. Kim, J. H. Hong, and C. Lee. 2002. Characterization of subtilein, a bacteriocin from Bacillus subtilis CAU131(KCCM 10257). J. Microbiol. Biotechnol. 12: 228-234
12 Klein, C., C. Kaletta, and K. D. Entian. 1993. Biosynthesis of the lanthibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl. Environ. Microbiol. 59: 296-303
13 Biswas, S. R., P. Ray, M. C. Johnson, and B. Ray. 1991. Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol. 57: 1265-1267
14 Reichmnn, P. and R. Hakenbeck. 2000. Allelic variation in a peptide-inducible two-component system of Streptococcus pneumoniae. FEMS Microbiol. Lett. 190: 231-236   DOI
15 Klein, C. and K. D. Entian. 1994. Gene involved in self protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC6633. Appl. Environ. Microbiol. 60: 2793-2801
16 Anderssen, E. L., D. B. Diep, J. F. Nes, V. G. H. Eijsink, and J. Nissen-Meyer. 1998. Antagonistic activity of Lactobacillus plantarum C11: two new-peptide bacteriocins, plantaricin EF and JK and the induction factor plantaricin A. Appl. Environ. Microbiol. 64: 2269-2272
17 Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocin of gram-positive bacteria. Microbiol. Rev. 59: 171-200
18 Kleerebezem, M. and L. E. Quadri. 2001. Peptide pheromone-dependent regulation of antimicrobial peptide production in gram-positive bacteria: a case of multicellular behavior. Peptide 22: 1579-1596   DOI   ScienceOn
19 Yang, E. J., J. Y. Chang, H. J. Lee, J. H. Kim, D. K. Chung, J. H. Lee, and H. C. Chang. 2002. Characterization of the antagonistic activity against Lactobacillus plantarum and induction of bacteriocin production. Kor. J. Food Sci. Technol. 34: 311-318   과학기술학회마을
20 Antonio, M., J. Rufino, and R. Jose Luis. 2004. Production of plantaricin NC8 by Lactobacillus plantarum NC8 is induced in the presence of different types of gram-positive. Arch. Microbiol. 181: 8-16   DOI
21 Lee, K. H., H. M. Kwon, C. H. Hong, and S. G. Park. 1999. Characterization of salmonella species isolated from poultry slaughterhouse and pork meat processing plants. J. Food Hyg. Safety 14: 97-103
22 Wood, K. V. and M. Woodbine. 1979. Low temperature virulence of Listeria monocytogenes in the avian embryo. Zbi. Bakteriol. hyg. I. Abt. Orig. A243: 74-81
23 Eijsink, V. G. H., M. B. Brurberg, P. H. Middelhoven, and I. H. Nes. 1996. Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J. Bacteriol. 178: 2232-2237
24 Nislen, T., I. F. Nes, and H. Holo. 1998. An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC492. J. Bacteriol. 180: 1848-1854
25 Moll, G. N., G. C. K. Roberts, W. N. Konings, and A. J. M. Driessen. 1996. Mechanism of lantibiotic-induced poreformation. Antonie van Leeuwenhoek 69: 185-191   DOI
26 Lars, A. and A. Holck. 1995. The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J. Bacteriol. 177: 2125-2137
27 de Vuyst, L., R. Calleweart, and K. Crabbe. 1996. Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiology 142: 817-827   DOI
28 Junttila, J., S. E. Niemela, and J. Hirn. 1988. Minimum growth temperatures of Listeria monocytogenes and mom hemolytic listeria. J. Appl. Bacteriol. 65: 321-327
29 Vincent, G. H. E., M. B. Brurberg, P. H. Middelhoven, and I. F. Nes. 1996. Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J. Bacteriol. 178: 2232-2237
30 Kuipers, O. P., M. M. Beerthuyzen, P. G. de Ruyter, E. J. Luesink, and W. M. de Vos. 1995. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 270: 27299-27304   DOI   ScienceOn