• Title/Summary/Keyword: Intracellular $Cl^-$ concentration

Search Result 47, Processing Time 0.029 seconds

Role of phospholipid metabolism in Methylmercury-induced Cytotoxicity

  • Kang, Mi-Sun;Jeong, Ju-Yeon;Jung, Sung-Yun;Kim, Dae-Kyong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.294.2-295
    • /
    • 2002
  • Methylmercury (MeHg: CH3HgCl) is a ubiquitous environmental toxicant that readily bioaccumulates in aquatic foodchains. This toxicant is most highly exposed to humans through the ingestion of contaminated food. and thus is an ongoing health concern. Thus far. MeHg has been suggested to exert its toxicity through its high reactivity to thiols of bioactive proteins. elevation in intracellular Ca2+ concentration. and generation of reactive oxygen species. but its mechanism remains poorly understood. (omitted)

  • PDF

A Study on the Protective Effects of Glutathione on Cytotoxicity of Mercury and Cadmium (수은 및 카드뮴의 세포독성에 대한 Glutathione의 역할에 관한 연구)

  • Jeong, Jae-Ho;Kim, Jun-Youn;Koh, Dai-Ha
    • Journal of Preventive Medicine and Public Health
    • /
    • v.32 no.2
    • /
    • pp.170-176
    • /
    • 1999
  • Objectives: To evaluate the protective effects of glutathione (GSH) on the cytotoxicity of mercurial compounds$(CM_3HgCl,\;HgCl_2)$ or cadmium chloride$(CdCl_2)$ in EMT-6 cells. Methods: The compounds investigated were $CH_3HgCl,\;HgCl_2,\;CdCl_2$, GSH, buthionine Sulfoximine(BSO), L-2-oxothiazolidine-4-carboxylic acid(OTC). Cytotoxicity analysis consist of nitric oxide(NO) production, ATP production and cell viability. Results: Mercurial compounds and cadmium chloride significantly decreased cell viability and the synthesis of NO and cellular ATP in EMT-6 cells. GSH was not toxic at concentrations of 0-1.6 mM. In the presence of GSH, mercurial compounds and cadmium did not decrease the production of ATP and nitrite in EMT-6 cells. The protective effects of GSH against the cytotoxicity of mercurial compounds and cadmium depended on the concentration of added GSH to the culture medium for EMT-6 cells. We evaluated the effects of intracellular GSH level on mercury- or cadmium-induced cytotoxicity by the pretreatment experiments. Pretreatment of GSH was not changed ${NO_2}^-$ and ATP production, and pretreatment of BSO was decreased in dose and time-dependent manner. Pretreatment of OTC was increased ${NO_2}^-$ and ATP production in dose- and tine-dependent manner. Because intracellular GSH level was increased by OTC pretreatment, the protective effect on mercury- and cadmium-induced cytotoxicity was increased. Conclusions: These results indicated that sulfhydryl compounds had the protective effects against mercury-induced cytotoxicity by the intracellular GSH levels.

  • PDF

Effects of Insulin and IGFs on Phosphate Uptake in Primary Cultured Rabbit Renal Proximal Tubule Cells

  • Han, Ho-Jae;Park, Kwon-Moo
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.63-76
    • /
    • 1996
  • The aim of present study was to characterize phosphate uptake and to investigate the mechanism for the insulin and insulin-like growth factor(IGF) stimulation of phosphate uptake in primary cultured rabbit renal proximal tubule cells. Results were as follows : 1. The primary cultured proximal tubule cells had accumulated $6.68{\pm}0.70$ nmole phosphate/mg protein in the presence of 140 mM NaCl and $2.07{\pm}0.17$ nmole phosphate/mg protein in the presence of 140 mM KCl during a 60 minute uptake period. Raising the concentration of extracellular phosphate to 100 mM$(48.33{\pm}1.76\;pmole/mg\;protein/min)$ induced decrease in phosphate uptake compared with that in control cells maintained in 1 mM phosphate$(190.66{\pm}13.01\;pmole/mg\;protein/min)$. Optimal phosphate uptake was observed at pH 6.5 in the presence of 140 mM NaCl. Phosphate uptake at pH 7.2 and pH 7.9 decreased to $83.06{\pm}5.75%\;and\;74.61{\pm}3.29%$ of that of pH 6.5, respectively. 2. Phosphate uptake was inhibited by iodoacetic acid(IAA) or valinomycin treatment $(62.41{\pm}4.40%\;and\;12.80{\pm}1.64%\;of\;that\;of\;control,\;respectively)$. When IAA and valinomycin were added together, phosphate uptake was inhibited to $8.04{\pm}0.61%$ of that of control. Phosphate uptake by the primary proximal tubule cells was significantly reduced by ouabain treatment$(80.27{\pm}6.96%\;of\;that\;of\;control)$. Inhibition of protein and/or RNA synthesis by either cycloheximide or actinomycin D markedly attenuated phosphate uptake. 3. Extracellular CAMP and phorbol 12-myristate 13 acetate(PMA) decreased phosphate uptake in a dose-dependent manner in all experimental conditions. Treatment of cells with pertussis toxin or cholera toxin inhibited phosphate uptake. cAMP concentration between $10^{-6}\;M\;and\;10^{-4}\;M$ significantly inhibited phosphate uptake. Phosphate uptake was blocked to about 25% of that of control at 100 ng/ml PMA. 3-Isobutyl-1-methyl-xanthine(IBMX) inhibited phosphate uptake. However, in the presence of IBMX, the inhibitory effect of exogenous cAMP was not significantly potentiated. Forskolin decreased phosphate transport. Acetylsalicylic acid did not inhibit phosphate uptake. The 1,2-dioctanoyl-sn-glycorol(DAG) and 1-oleoyl-2-acetyl-sn- glycerol(OAG) showed a inhibitory effect. However, staurosporine had no effect on phosphate uptake. When PMA and staurosporine were treated together, inhibition of phosphate uptake was not observed. In conclusion, phosphate uptake is stimulated by high sodium and low phosphate and pH 6.5 in the culture medium. Membrane potential and intracellular energy levels are also an important factor fer phosphate transport. Insulin and IGF-I stimulate phosphate uptake through a mechanisms that involve do novo protein and/or RNA synthesis and decrease of intracellular cAMP level. Also protein kinase C(PKC) is may play a regulatory role in transducing the insulin and IGF-I signal for phosphate transport in primary cultured proximal tubule cells.

  • PDF

Inhibitory Effect of Cordycepin on Human Platelet Aggregation

  • Cho, Hyun-Jeong;Ham, Hye-Seon;Lee, Tae-Kyung;Jung, Young-Jin;Park, Sun-A;Kang, Hyo-Chan;Park, Hwa-Jin
    • Biomedical Science Letters
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Cordycepin separated from Cordyceps militaris is a major physiologic active component in Cordyceps militaris. The platelet aggregation is stimulated by $Ca^{2+}$, which is either mobilized from intracellular endoplasmic reticulum or transported from extracellular space. cGMP antagonizes the actions of $Ca^{2+}$. Based on these facts, we have investigated the effects of cordycepin on the mobilization of $Ca^{2+}$ and the production of cGMP on collagen ($10\mu$g/ml)-induced human platelet aggregation. Cordycepin potently stimulated the human platelet aggregation induced by collagen ($10\mu$g/ml) in a dose-dependent manner. Cordycepin (500 $\mu$M) inhibited also the collagen-induced human platelet aggregation in the presence both 1 mM and 2 mM of $CaCl_2$. These are in accord with the results that cordycepin inhibited the $Ca^{2+}$- influx on collagen-induced human platelet aggregation. These results suggest that cordycepin decrease the intracellular $Ca^{2+}$ concentration to inhibit collagen-induced human platelet aggregation. Besides, cordycepin increased the level of cGMP on collagen-induced human platelet aggregation. This result is related with the decrease of intracellular $Ca^{2+}$ concentration, because cGMP inhibits the mobilization of $Ca^{2+}$. In addition, cordycepin inhibited the human platelet aggregation induced by LY -83583, inhibitor of guanylate cyclase. This result suggested that cordycepin inhibit the platelet aggregation by stimulating the activity of guanylate cyclase. In conclusion, we demonstrated that cordycepin might have the antiplatelet function by inhibiting $Ca^{2+}$-mobilization via the stimulation of the production of cGMP.

  • PDF

Effects of Histamine $H_2-Receptor$ Stimulation on $Mg^{2+}$ Efflux in Perfused Guinea Pig Heart

  • Kang, Hyung-Sub;Chang, Sung-Eun;Kang, Chang-Won;Chae, Soo-Wan;Kim, Jin-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.49-54
    • /
    • 1998
  • $Mg^{2+}$ is an important regulator of many cardiac functions. However, regulation of intracellular $Mg^{2+}$ activity in the heart is not well characterized. To assess the effect of histamine $H_2$-receptor stimulation on intracellular $Mg^{2+}$ regulation, changes in extracellular $Mg^{2+}$ concentration were examined under a variety of conditions in perfused guinea pig hearts. $Mg^{2+}$ in the cardiac perfusate was measured by atomic absorbance spectrophotometry. The histamine ($10^{-6}$ M) inuced a marked $Mg^{2+}$ efflux from the heart. The $H_2$-receptor antagonists, cimetidine ($10^{-6}$ M), ranitidined ($10^{-5}$ M), but not a H1-receptor antagonist, diphenhydramine ($3{\times}10^{-6}$ M), completely blocked the histamine-induced $Mg^{2+}$ efflux. The $Mg^{2+}$ efflux could also be induced by forskolin ($3{\times}10^{-6}$ M), 8-Cl-cAMP ($2{\times}10^{-4}$ M), permeable cAMP analogue, or dimaprit, ($10^{-5}$ M). However, the carbachol ($10^{-5}$ M) considerably decreased the efflux of $Mg^{2+}$. In the presence of papaverine ($10^{-5}$ M), a phosphodiesterase inhibitor, dimaprit-induced $Mg^{2+}$ efflux was potentiated. These results suggest that a significant $Mg^{2+}$ efflux from perfused guinea pig heart by histamine can be induced by the histamine $H_2$-receptor stimulation and it is suggested that cytosolic cAMP may be linked.

  • PDF

Induces Vasodilatation of Rat Mesenteric Artery in vitro Mainly by Inhibiting Receptor-Mediated $Ca^{2+}$ -Influx and $Ca^{2+}$ -Release

  • Cao Yong-Xiao;Zheng Jian-Pu;He Jian-Yu;Li Jie;Xu Cang-Bao;Edvinsson Lars
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.709-715
    • /
    • 2005
  • The purpose of this study was to investigate the effect of atropine on peripheral vasodilation and the mechanisms involved. The isometric tension of rat mesenteric artery rings was recorded in vitro on a myograph. The results showed that atropine, at concentrations greater than 1$\mu$M, relaxed the noradrenalin (NA)-precontracted rat mesenteric artery in a concentration-dependent manner. Atropine-induced vasodilatation was mediated, in part, by an endothelium-dependent mechanism, to which endothelium-derived hyperpolarizing factor may contribute. Atropine was able to shift the NA-induced concentration-response curve to the right, in a non-parallel manner, suggesting the mechanism of atropine was not mediated via the ${\alpha}_1$-adrenoreceptor. The $\beta$-adrenoreceptor and ATP sensitive potassium channel, a voltage dependent calcium channel, were not involved in the vasodilatation. However, atropine inhibited the contraction derived from NA and $CaCl_2$ in $Ca^{2+}$-free medium, in a concentration dependent manner, indicating the vasodilatation was related to the inhibition of extracellular $Ca^{2+}$ influx through the receptor-operated calcium channels and intracellular $Ca^{2+}$ release from the $Ca^{2+}$ store. Atropine had no effect on the caffeine-induced contraction in the artery segments, indicating the inhibition of intracellular $Ca^{2+}$ release as a result of atropine most likely occurs via the IP3 pathway rather than the ryanodine receptors. Our results suggest that atropine-induced vasodilatation is mainly from artery smooth muscle cells due to inhibition of the receptor-mediated $Ca^{2+}$-influx and $Ca^{2+}$-release, and partly from the endothelium mediated by EDHF.

Changes on the Methylmercury-induced Cytotoxicity by Control of Cell Membrane Transport System (세포막 물질수송계의 조절에 의한 유기수은의 세포독성 변화에 대한 연구)

  • 염정호;고대하;김준연;김남송
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.88-96
    • /
    • 2000
  • The aim of the current study was to evaluate the transport system in EMT-6 cell for the uptake of the methylmercury(MeHg). Several inhibitors ere used to test used to test which potential transport system might be involoved in MeHg uptake. Probenecid was used to test the organic transport system, valinomycin for testing the effect of the membrane potential, cytochalasin B for testing the facilitated diffusive D-glucose transport system and colchicine for testing the microtubule system. Ouabain for evaluating active transport system, 4',4-diisothiocyano-2',2-stilbenedisulfonic acid(DIDS) the Cl- ion transport system and verapamil for the $Ca^{2+}$ transprot system. Significantly, MeHg decreased the synthesis of nitric oxcide(NO) and intracellular ATP in ENT-6 cells. In the condition of ouabain containing with MeHg decreased the production of NO and intracelluar ATP. In the treatment of inhibitors, ouabain showed protective effect against cytotoxicity of MeHg but ather inhibitors not showed protective effects. The protective effects of ouabain against the cytotoxicity of MeHg deoended on the concentration of added ouabain to the culture medium for MET-6 cells. These result showed that the uptake of MeHg might be involved in the active transport system. Active transports system seems to share similarities with the transport systems for the uptake of MeHg when using MeHg and MeHg-glutathione complex.x.

  • PDF

The Inhibitory Effects of Hydrogen Sulfide on Pacemaker Activity of Interstitial Cells of Cajal from Mouse Small Intestine

  • Parajuli, Shankar Prasad;Choi, Seok;Lee, Jun;Kim, Young-Dae;Park, Chan-Guk;Kim, Man-Yoo;Kim, Hyun-Il;Yeum, Cheol-Ho;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.2
    • /
    • pp.83-89
    • /
    • 2010
  • In this study, we studied whether hydrogen sulfide ($H_2S$) has an effect on the pacemaker activity of interstitial cells of Cajal (ICC), in the small intestine of mice. The actions of $H_2S$ on pacemaker activity were investigated using whole-cell patch-clamp technique, intracellular $Ca^{2+}$ analysis at $30^{\circ}C$ and RT-PCR in cultured mouse intestinal ICC. Exogenously applied sodium hydrogen sulfide (NaHS), a donor of hydrogen sulfide, caused a slight tonic inward current on pacemaker activity in ICC at low concentrations (50 and $100{\mu}m$), but at high concentration ($500{\mu}m$ and 1 mM) it seemed to cause light tonic inward currents and then inhibited pacemaker amplitude and pacemaker frequency, and also an increase in the resting currents in the outward direction. Glibenclamide or other potassium channel blockers (TEA, $BaCl_2$, apamin or 4-aminopydirine) did not have an effect on NaHS-induced action in ICC. The exogenous application of carbonilcyanide p-triflouromethoxyphenylhydrazone (FCCP) and thapsigargin also inhibited the pacemaker activity of ICC as NaHS. Also, we found NaHS inhibited the spontaneous intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) oscillations in cultured ICC. In doing an RT-PCR experiment, we found that ICC enriched population lacked mRNA for both CSE and CBS, but was prominently detected in unsorted muscle. In conclusion, $H_2S$ inhibited the pacemaker activity of ICC by modulating intracellular $Ca^{2+}$. These results can serve as evidence of the physiological action of $H_2S$ as acting on the ICC in gastrointestinal (GI) motility.

Novel Glycolipoproteins from Ginseng

  • Pyo, Mi-Kyung;Choi, Sun-Hye;Hwang, Sung-Hee;Shin, Tae-Joon;Lee, Byung-Hwan;Lee, Sang-Mok;Lim, Yoong-Ho;Kim, Dong-Hyun;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.92-103
    • /
    • 2011
  • Ginseng has been used as a general tonic agent to invigorate human body. In the present study, we isolated novel glycolipoproteins from ginseng that activate $Ca^{2+}$-activated $Cl^-$ channel (CaCC) in Xenopus oocytes and transiently increase intracellular free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) in mouse Ehrlich ascites tumor cells. We named the active ingredients as gintonin. Gintonin exists in at least six different forms. The native molecular weight of gintonin is about 67 kDa but its apparent molecular weight is about 13 kDa, indicating that gintonin might be a pentamer. Gintonin is rich in hydrophobic amino acids. Its main carbohydrates are glucose and glucosamine. Its lipid components are linoleic, palmitic, oleic, and stearic acids. Gintonin actions were blocked by U73122, a phospholipase C inhibitor, 2-aminoethxydiphenyl borate, an inositol 1,4,5-trisphosphate receptor antagonist, or bis (o-aminophenoxy) ethane-N,N,N0,N0-tetracetic acid acetoxymethyl ester, a membrane permeable $Ca^{2+}$ chelator. In the present study, we for the first time isolated novel gintonin and showed the signaling pathways on gintonin-mediated CaCC activations and transient increase of $[Ca^{2+}]_i$. Since $[Ca^{2+}]_i$ as a second messenger plays a pivotal role in the regulation of diverse $Ca^{2+}$-dependent intracellular signal pathways, gintonin-mediated regulations of $[Ca^{2+}]_i$ might contribute to biological actions of ginseng.

Mechanism and Regulation of Amino Acid Transport in Mammary Gland - Review -

  • Kansal, Vinod K.;Sharma, Rekha
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.5
    • /
    • pp.710-719
    • /
    • 2001
  • Several amino acid transport systems in mammary gland have been characterized during the last few years. These systems may be divided into two broad categories based on whether they are sodium-dependent or $Na^{+}$-independent, and each of these categories is subdivided into 3 groups depending on whether the systems prefer zwitterionic, cationic or anionic substrates. The zwitterion preferring transport processes in mammary gland are $Na^{+}$-dependent system A and $Na^{+}$-independent systems L and T. System $y^{+}$ is a $Na^{+}$-independent transporter of cationic amino acids and $X_{AG^{-}}$ is a $Na^{+}$-dependent system for anionic amino acids. A ($Na^{+}+Cl^{-}$)-dependent system, selective for $\beta$-amino acids has been reported in rat mammary tissue. In addition, there is yet another class of transporters that have still broader specificity. The $Na^{+}$-dependent systems $BCl^{-}$-dependent and $BCl^{-}$-independent and $Na^{+}$-independent system $y^{+}L$ have been reported to mediate the transport of zwitterionic as well as cationic amino acids. Each system has been characterized with respect to its substrate specificity, affinity, kinetics and ion-dependence. Transport of amino acids by mammary tissue is regulated by i) the intracellular substrate concentration, ii) lactogenic hormones and iii) milk stasis. Four of the above transport systems (i.e. A, L, $y^{+}$ and $BCl^{-}$-independent) are up-regulated by lactogenic hormones (insulin, cortisol and prolactin) in mammary gland.