• 제목/요약/키워드: Intracellular $Ca^{2+}$ concentration

검색결과 323건 처리시간 0.02초

Analysis of vasopressin-induced Ca2+ influx in rat hepatocytes

  • Kim, Hyun-Sook;Im, Dong-Soon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.271.2-271.2
    • /
    • 2002
  • To analyze vasopressin-induced Ca$\sub$2+/ influx in liver cells, rat hepatocytes were isolated and attached to collagen-coated cover slips. Using fura-2, a Ca$\sub$2+/-sensing dye, changes in intracellular Ca$\sub$2+/ concentration by vasopressin were monitored. Results in this communication suggested that vasopressin-induced Ca$\sub$2+/ influx consists of two distinguishable components. One was present for a short time and the other was for a long time until it happened. (omitted)

  • PDF

The Inhibitory Effects of Cordycepin (3'-deoxyadenosine) on Thapsigargin-enhanced Cytosolic $Ca^{2+}$-influx and -mobilization in Human Platelets

  • Cho, Hyun-Jeong;Park, Hwa-Jin
    • 대한의생명과학회지
    • /
    • 제15권4호
    • /
    • pp.273-279
    • /
    • 2009
  • Cordycepin (3'-deoxyadenosine) is an adenosine analogue isolated from Cordyceps militaris, and it has been used as an anti-cancer and anti-inflammation ingredient in traditional Chinese medicine. We investigated the effects of cordycepin on human platelet aggregation induced by thapsigargin, and determined the cytosolic free $Ca^{2+}$ levels ($[Ca^{2+}]_i$), an aggregation-stimulating factor. Cordycepin significantly inhibited thapsigargin-induced platelet aggregation. Its inhibitory effect was continually sustained at the maximal aggregation concentration of thapsigargin. The thapsigargin-induced $[Ca^{2+}]_i$ were clearly reduced by cordycepin in the presence of exogenous $CaCl_2$ or extracellular $Ca^{2+}$-chelator (EDTA). These results suggest that cordycepin inhibited thapsigargin-induced $Ca^{2+}$-influx from extracellular domain and thapsigargin-induced $Ca^{2+}$-mobilization from intracellular $Ca^{2+}$ storage. Accordingly, our data demonstrated that cordycepin may have a beneficial effect on platelet aggregation-mediated thrombotic diseases by inhibiting a $[Ca^{2+}]_i$-elevation.

  • PDF

2-(4-시아노페닐) 아미노 -1,4-나프탈렌디온-3-피리디니움 퍼클로레이트 (PQ5)의 항혈소판작용 (Antiplatelet Activity of 2-(4-Cyanophenyl) amino-1,4-naphthalenedione-3-pyridinium perchlorate (PQ5))

  • 김도희;이수환;최소연;문창현;문창현;김대경;유충규
    • 약학회지
    • /
    • 제43권6호
    • /
    • pp.809-817
    • /
    • 1999
  • The effect of 2-(4-cyanophenyl)amino-1,4-naphthalenedione-3-pyridinium perchlorate (PQ5) on pla-telet aggregation and its action mechanisms were investigated with rat platelet. PQ5 inhibited the platelet aggregation induced by collagen ($6{\;}{\mu\textrm{g}}/ml$), thrombin (0.4 U/ml) and A23187 ($3{\mu}M$) in concentration-dependent manner with $IC_{50}$ values of 5.50, 25.89 and $37.12{\;}{\mu}M$, respectively. PQ5 also significantly reduced the thromboxane $A_2$ (TXA2) formation in a concentration dependent manner. The collagen-induced arachidonic acid (AA) release in [-3H]-AA incorporated platelet, an indication of the phospholipase $A_2$ activity, was decreased by PQ5 pretreatment PQ5 significantly inhibited the activity of thormboxane synthase only at high concentration ($100{\mu}M$), but did not affect the cyclooxygenase activity at all. Collagen-induced ATP release was significantly reduced by PQ5. Calcium-induced platelet aggregation experiment suggests that the elevation of intracellular free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) by collagen stimulation is decreased by the pretreatment of PQ5, which is due to the inhibition of calcium release from intracellular store and influx from outside of the cell. PQ5 did not showed the effect of anticoagulation as prothrombin time (PT) or activated partial thromboplastin time (APTT). Form these results, it is suggested that PQ5 exerts its antiplatelet activity through the inhibition of the intracellular $Ca^{2+}$ mobilization and the decrease of the $TXA_2$ synthesis.

  • PDF

Role of $Ca^{2+}$ in the Stimulation of Glucose Transport by Insulin in Adipocytes

  • Chang, Sung-Hoe;Jang, Yeon-Jin;Park, Kun-Koo;Kim, Ghi-Su;Ryu, Hee-Jeong;Park, Chun-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권3호
    • /
    • pp.357-364
    • /
    • 1999
  • We investigated the role of $Ca^{2+}$ and protein kinases/phosphatases in the stimulatory effect of insulin on glucose transport. In isolated rat adipocytes, the simple omission of $CaCl_2$ from the incubation medium significantly reduced, but did not abolish, insulin-stimulated 2-deoxy glucose (2-DG) uptake. Pre-loading adipocytes with intracellular $Ca^{2+}$ chelator, 5,5'-dimethyl bis (o-aminophenoxy)ethane-N,N,N'N' tetraacetic acetoxymethyl ester (5,5'-dimethyl BAPTA/AM) completely blocked the stimulation. Insulin raised intracellular $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ about 1.7 times the basal level of $72{\pm}5$ nM, and 5,5'-dimethyl BAPTA/AM kept it constant at the basal level. This correlation between insulin-induced increases in 2-DG uptake and $[Ca^{2+}]_i$ indicates that the elevation of $[Ca^{2+}]_i$ may be prerequisite for the stimulation of glucose transport. Studies with inhibitors (ML-9, KN-62, cyclosporin A) of $Ca^{2+}-calmodulin$ dependent protein kinases/phosphatases also indicate an involvement of intracellular $Ca^{2+}.$ Additional studies with okadaic acid and calyculin A, protein phosphatase-1 (PP-1) and 2A (PP-2A) inhibitors, indicate an involvement of PP-1 in insulin action on 2-DG uptake. These results indicate an involvement of $Ca^{2+}-dependent$ signaling pathway in insulin action on glucose transport.

  • PDF

황체막에서의 $Ca^{++}-ATPase$의 특성 (Partial Characterization of Physicochemical and Kinetic Properties of $Ca^{++}-ATPase$ System in Luteal Membranes)

  • 최규복;구본숙;김인교
    • The Korean Journal of Physiology
    • /
    • 제20권2호
    • /
    • pp.257-270
    • /
    • 1986
  • It has been reported that the luteal function may be regulated by the intracellular calcium in luteal cells (Higuchi et al, 1976; Dorflinger et at, 1984; Gore and Behrman, 1984) which is adjusted partially by $Ca^{++}-ATPase$ activities in luteal cell membranes (Verma and Pennistion, 1981). However, the physicochemical and kinetic properties of $Ca^{++}-ATPase$ in luteal membranes were not fully characterized. This study was, therefore, undertaken to partially characterize the physicochemical and kinetic properties of $Ca^{++}-ATPase$ system in luteal membranes and microsomal fractions, known as an one of the major $Ca^{++}$ storge sites (Moore and Pastan, 1978), from the highly luteinized ovary Highly luteinized ovaries were obtained from PMSG-hCG injected immautre female rats. Light membrane and heavy membrane fractions and microsomal fractions were prepared by the differential and discontinuous sucrose density gradient centrifugation method desribed by Bramley and Ryan (1980). Light membrane and heavy membrane fractions and microsomal fractions from highly luteinized ovaries are composed of the two different kinds of $Ca^{++}-ATPase$ system. One is the high affinity $Ca^{++}-ATPase$ which is activated in low $Ca^{++}$ concentration (Km, 10-30 nM), the other is low affinity $Ca^{++}-ATPase$ activated in higher $Ca^{++}$ concentration $(K_{1/2},\;40\;{\mu}M)$. At certain $Ca^{++}$ concentrations, activities of high and low affinity $Ca^{++}-ATPase$ are the highest in light membrane fractions and are the lowest in microsomal fractions. It appeares that high affinity $Ca^{++}-ATPase$ system have 2 binding sites for ATP (Hill's coefficient; around 2 in all membrane fractions measured) and the positive cooperativity of ATP bindings obviously existed in each membrane fractions. The optimum pH for high affinity $Ca^{++}-ATPase$ activation is around S in all membrane fractions measured. The lipid phase transition temperature measured by Arrhenius plots of high affinity $Ca^{++}-ATPase$ activity is around $25^{\circ}C$. The activation energies of high affinity $Ca^{++}-ATPase$ below the transition temperature are similar in each membrane fractions, but at the above transition temperature, it is the hightest in heavy membrane fractions and the lowest in microsomal fractions. According to the above results, it is suggested that intracellular $Ca^{++}$ level, which may regulate the luteal function, may be adjusted primarily by the high affinity $Ca^{++}-ATPase$ system activated in intracellular $Ca^{++}$ concentration range $(below\;0.1\;{\mu}M)$.

  • PDF

Inhibition of Tyrosine Hydroxylase by $(1R,9S)-{\beta}-Hydrastine$ Hydrochloride in PC12 cells

  • Yin, Shou-Yu;Kim, Yu-Mi;Lee, Jae-Joon;Jin, Chun-Mei;Yang, Yoo-Jung;Lim, Kyo-Whan;Kang, Min-Hee;Lee, Myung-Koo
    • Natural Product Sciences
    • /
    • 제10권3호
    • /
    • pp.114-118
    • /
    • 2004
  • It is reported that $(1R,9S)-{\beta}-Hydrastine$ hydrochloride (BHSH) decreased the intracellular dopamine content by inhibiting tyrosine hydroxylase (TH) activity in PC12 cells. In this study, the inhibitory mechanisms on TH activity by BHSH in PC12 cells were investigated. BHSH treatment caused a reduction of TH activity and TH mRNA level in a dose-dependent manner. After the treatment of $20\;{\mu}M$ BHSH, TH activity and TH mRNA content were reduced at 15 min, reached the minimal levels at 6-24 h, and then recovered gradually to the control level. BHSH at $10-50\;{\mu}M$ caused a decrease in the basal intracellular cyclic AMP levels at 10 min in a concentration-dependent manner. In addition, BHSH at $20-100\;{\mu}M$ decreased the basal intracellular $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ immediately in a dose-dependent manner. BHSH also inhibited the 56 mM $K^+ $ depolarization-induced elevation in $[Ca^{2+}]_i$, and blocked caffeine-activated store-operated $Ca^{2+}$ entry in PC12 cells. These data suggest that BHSH inhibits TH activity and TH gene expression, in part, through reducing cyclic AMP content and basal $[Ca^{2+}]_i$ in PC12 cells.

Thyroid Hormone-Induced Alterations of $Ca^{2+}-ATPase$ and Phospholamban Protein Expression in Cardiac Sarcoplasmic Reticulum

  • Kim, Hae-Won;Noh, Kyung-Min;Park, Mi-Young;Lee, Hee-Ran;Lee, Eun-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권2호
    • /
    • pp.223-230
    • /
    • 1999
  • Alterations of cardiovascular function associated with various thyroid states have been studied. In hyperthyroidism left ventricular contractility and relaxation velocity were increased, whereas these parameters were decreased in hypothyroidism. The mechanisms for these changes have been suggested to include alterations in the expression and/or activity levels of various proteins; ${\alpha}-myosin$ heavy chain, ${\beta}-myosin$ heavy chain, ${\beta}-receptors,$ the guanine nucleotide-binding regulatory protein, and the sarcolemmal $Ca^{2+}-ATPase.$ All these cellular alterations may be associated with changes in the intracellular $Ca^{2+}$ concentration. The most important regulator of intracellular $Ca^{2+}$ concentration is the sarcoplasmic reticulum (SR), which serves as a $Ca^{2+}$ sink during relaxation and as a $Ca^{2+}$ source during contraction. The $Ca^{2+}-ATPase$ and phospholamban are the most important proteins in the SR membrane for muscle relaxation. The dephosphorylated phospholamban inhibits the SR $Ca^{2+}-ATPase$ through a direct interaction, and phosphorylation of phospholamban relieves the inhibition. In the present study, quantitative changes of $Ca^{2+}-ATPase$ and phospholamban expression and the functional consequences of these changes in various thyroid states were investigated. The effects of thyroid hormones on (1) SR $Ca^{2+}$ uptake, (2) phosphorylation levels of phospholamban, (3) SR $Ca^{2+}-ATPase$ and phospholamban protein levels, (4) phospholamban mRNA levels were examined. Our findings indicate that hyperthyroidism is associated with increases in $Ca^{2+}-ATPase$ and decreases in phospholamban levels whereas opposite changes in these proteins occur in hypothyroidism.

  • PDF

수소이온농도 변화의 수축물질에 따른 가토신동맥 수축에 미치는 영향과 기전 (Effects of $H^{+}$ on the Contraction Induced by Various Agonists in the Renal Artery of a Rabbit)

  • 장석종;김세훈;전병화;박해근
    • The Korean Journal of Physiology
    • /
    • 제24권1호
    • /
    • pp.161-170
    • /
    • 1990
  • The effects of $H^{+}$ on the arterial contraction and their mechanisms were investigated in the renal artery of a rabbit. The helical strips of isolated renal artery were immersed in the HEPES-buffered or $CO_{2}/HCO_{3}^{-}$-buffered Tyrode's solution. The contractions induced by agonists (norepinephrine, histamine, serotonin and angiotensin II) or high $K^{+}$ were observed with change of extracellular or intracellular $H^{+}$ concentration. The contractions induced by norepinephrine, histamine, serotonin, angiotensin II or high $K^{+}$ in HEPES-buffered Tyrode's solution were inhibited by increase in extracellular $H^{+}$ concentration and potentiated by decrease in extracellular $H^{+}$ concentration. The degrees of these effects were most evident in the contraction induced by serotonin and angiotensin II, moderate in those by histamine and high $K^{+}$, and least in those by norepinephrine. Maximal contraction by norepinephrine, histamine and high $K^{+}$ were not influenced by change in extracellular $H^{+}$ concentration, but influenced in those contration by serotonin and angiotensin II. The attenuated contractions by an acidic pH were not returned to the level of contraction at normal pH (7.4) by elevation of extracellular $Ca{2+}$ concentration. The agonists (norepinephrine, histamine and serotonin)-induced contractions in $Ca{2+}$-free Tyrode's solution were also attenuated by increase in extracellular $H^{+}$ concentration and potentiated by decrease in extracellular $H^{+}$ concentration. Elevation of $Pco_{2}$ in the $CO_{2}/HCO_{3}^{-}$-buffered Tyrode's solution, which increase the intracellular $H^{+}$ concentration, at constant extracellular pH (7.4), increased the contraction by 30 mM $K^{+}$. From the above results, it is suggested that the decrease in contractions by increase in extracellular $H^{+}$ concentration may be resulted from that $H^{+}$ make the receptors less sensitive to agonists and cell membrane hyperpolarize and then inhibit the $Ca{2+}$ influx as well as $Ca{2+}$ release from intracellular $Ca{2+}$ storage site.

  • PDF

Acute Ethanol Reduces Calcium Signaling Elicited by K+ Depolarization in Cultured Cerebellar Granule Neurons

  • Kim, Jong-Nam
    • Toxicological Research
    • /
    • 제16권1호
    • /
    • pp.63-66
    • /
    • 2000
  • The effects of acute ethanol on the high K+ induced $Ca^{2+}}$ signals were examined from primary cultures of cerebellar granule neurons. $Ca^{2+}}$ signals were measured with Calcium Green-1 based microscopic video imaging. Because $Ca^{2+}}$ signal was low in most of granule neurons without stimuli, high KCI was used for depolarization. In most case, acute exposure to ethanol reduced the peak amplitude of the $Ca^{2+}}$ signals, induced by high K+, even though low concentration of ethanol(2~10mM) was used and the effects lasted more than 30min. In was also possible to see differences of ethanol inhibition, i.e. the temporal pattern of $Ca^{2+}}$ signal reductions and the strength of inhibition of $Ca^{2+}}$ signals in cerebellar granule neurons. These results indicate that low concentration of ethanol has diverse actions on the $Ca^{2+}}$ signals in cerebellar granule neurons.

  • PDF

Bacterial PAMPs and Allergens Trigger Increase in $[Ca^{2+}]_i$-induced Cytokine Expression in Human PDL Fibroblasts

  • Son, Ga-Yeon;Shin, Dong Min;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권3호
    • /
    • pp.291-297
    • /
    • 2015
  • An oral environment is constantly exposed to environmental factors and microorganisms. The periodontal ligament (PDL) fibroblasts within this environment are subject to bacterial infection and allergic reaction. However, how these condition affect PDL fibroblasts has yet to be elucidated. PDL fibroblasts were isolated from healthy donors. We examined using reverse transcription-polymerase chain reaction and measuring the intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$). This study investigated the receptors activated by exogenous bacterial pathogens (Lipopolysaccharide and peptidoglycan) and allergens (German cockroach extract and house dust mite) as well as these pathogenic mediators-induced effects on the intracellular $Ca^{2+}$ signaling in human PDL fibroblasts. Moreover, we evaluated the expression of pro-inflammatory cytokines (interleukin (IL)-$1{\beta}$, IL-6, and IL-8) and bone remodeling mediators (receptor activator of NF-${\kappa}B$ ligand and osteoprotegerin) and intracellular $Ca^{2+}$-involved effect. Bacterial pathogens and allergic mediators induced increased expression of pro-inflammatory cytokines, and these results are dependent on intracellular $Ca^{2+}$. However, bacterial pathogens and allergic mediators did not lead to increased expression of bone remodeling mediators, except lipopolysaccharide-induced effect on receptor activator of NF-${\kappa}B$ ligand expression. These experiments provide evidence that a pathogens and allergens-induced increase in $[Ca^{2+}]_i$ affects the inflammatory response in human PDL fibroblasts.