• Title/Summary/Keyword: Intracanal disinfection

Search Result 12, Processing Time 0.016 seconds

TREATMENT OF IMMATURE TEETH WITH A 3-MIX PASTE: CASE REPORT (항생제를 이용한 미성숙 영구치의 치험례)

  • Kim, So-Jung;Cho, Hae-Sung;Chung, Youn-Joo;Choi, Sung-Chul;Park, Jae-Hong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.38 no.1
    • /
    • pp.44-50
    • /
    • 2011
  • An immature tooth with infected pulp has numerous potential complications. Conventional apexification with calcium hydroxide has several disadvantages, including susceptibility to tooth fracture. This method does not promote continual root development. Pulp revascularization of a necrotic, immature permanent tooth will allow further development of the root and dentinal structure. Disinfection of the root canal system is a prerequisite for pulp revascularization and tissue regeneration. A combination of antibiotic drugs (ciprofloxacin, metronidazole, and minocycline) is effective for disinfection of necrotic pulp, and has been used successfully in regenerative endodontic treatment. These case reports involve the treatment of 3 immature permanent teeth with necrotic pulp using a 3-Mix paste and mineral trioxide aggregate. All cases showed the notable apical maturation with closure of the apex and increased thickness of dentinal walls. This approach suggests a paradigm shift in treating endodontically involved immature permanent teeth from the traditional apexification with calcium hydroxide to the conservative approach by providing a favorable environment for tissue regeneration.

A comparison of chlorhexidine release rate from three polymeric controlled release drug prototypes (제어방출형 소독제의 약물전달 체로 사용된 폴리머 유형에 따른 클로르헥시딘 제어 방출속도 비교)

  • Bok Young-Bin;Lee Doug-Youn;Lee Chang-Young;Kim Kyung-Nam;Kum Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.548-552
    • /
    • 2004
  • Intracanal disinfection of infected root canal is one of important treatment procedure. This in vitro study aimed to evaluate whether the surface polymers of controlled release drug (CRD) can effectively control the release rate of chlorhexidine for root canal disinfection. Four CRD prototypes were prepared: Group A (n=12); The core device (absorbent paper point) was loaded with 40% CHX solution as control. Group B (n=12); same as group A, but the device was coated with chitosan. Group C (n=12); same as group A and then coated three times with 5% PMMA. Group D (n=12); same as group A and then coated three times with 3% PLGA. All CRD prototypes were soaked in 3 mL distilled water for experimental periods and the concentrations of released CHX from each CRD prototype were determined using a UV spectrophotometer. Results showed that release rate of CHX were the greatest in the non-coated group (control group), followed by the chitosan-coated group, the PLGA-coated group, and the PMMA-coated group (P < 0.05). This data indicate that surface polymers can control the release rate of CHX from the CRD prototypes.