• Title/Summary/Keyword: Intra-Sentence Segmentation

Search Result 4, Processing Time 0.019 seconds

Intra-Sentence Segmentation using Maximum Entropy Model for Efficient Parsing of English Sentences (효율적인 영어 구문 분석을 위한 최대 엔트로피 모델에 의한 문장 분할)

  • Kim Sung-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.5
    • /
    • pp.385-395
    • /
    • 2005
  • Long sentence analysis has been a critical problem in machine translation because of high complexity. The methods of intra-sentence segmentation have been proposed to reduce parsing complexity. This paper presents the intra-sentence segmentation method based on maximum entropy probability model to increase the coverage and accuracy of the segmentation. We construct the rules for choosing candidate segmentation positions by a teaming method using the lexical context of the words tagged as segmentation position. We also generate the model that gives probability value to each candidate segmentation positions. The lexical contexts are extracted from the corpus tagged with segmentation positions and are incorporated into the probability model. We construct training data using the sentences from Wall Street Journal and experiment the intra-sentence segmentation on the sentences from four different domains. The experiments show about $88\%$ accuracy and about $98\%$ coverage of the segmentation. Also, the proposed method results in parsing efficiency improvement by 4.8 times in speed and 3.6 times in space.

Sentence design for speech recognition database

  • Zu Yiqing
    • Proceedings of the KSPS conference
    • /
    • 1996.10a
    • /
    • pp.472-472
    • /
    • 1996
  • The material of database for speech recognition should include phonetic phenomena as much as possible. At the same time, such material should be phonetically compact with low redundancy[1, 2]. The phonetic phenomena in continuous speech is the key problem in speech recognition. This paper describes the processing of a set of sentences collected from the database of 1993 and 1994 "People's Daily"(Chinese newspaper) which consist of news, politics, economics, arts, sports etc.. In those sentences, both phonetic phenometla and sentence patterns are included. In continuous speech, phonemes always appear in the form of allophones which result in the co-articulary effects. The task of designing a speech database should be concerned with both intra-syllabic and inter-syllabic allophone structures. In our experiments, there are 404 syllables, 415 inter-syllabic diphones, 3050 merged inter-syllabic triphones and 2161 merged final-initial structures in read speech. Statistics on the database from "People's Daily" gives and evaluation to all of the possible phonetic structures. In this sentence set, we first consider the phonetic balances among syllables, inter-syllabic diphones, inter-syllabic triphones and semi-syllables with their junctures. The syllabic balances ensure the intra-syllabic phenomena such as phonemes, initial/final and consonant/vowel. the rest describes the inter-syllabic jucture. The 1560 sentences consist of 96% syllables without tones(the absent syllables are only used in spoken language), 100% inter-syllabic diphones, 67% inter-syllabic triphones(87% of which appears in Peoples' Daily). There are rougWy 17 kinds of sentence patterns which appear in our sentence set. By taking the transitions between syllables into account, the Chinese speech recognition systems have gotten significantly high recognition rates[3, 4]. The following figure shows the process of collecting sentences. [people's Daily Database] -> [segmentation of sentences] -> [segmentation of word group] -> [translate the text in to Pin Yin] -> [statistic phonetic phenomena & select useful paragraph] -> [modify the selected sentences by hand] -> [phonetic compact sentence set]

  • PDF

Syntactic Category Prediction for Improving Parsing Accuracy in English-Korean Machine Translation (영한 기계번역에서 구문 분석 정확성 향상을 위한 구문 범주 예측)

  • Kim Sung-Dong
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.345-352
    • /
    • 2006
  • The practical English-Korean machine translation system should be able to translate long sentences quickly and accurately. The intra-sentence segmentation method has been proposed and contributed to speeding up the syntactic analysis. This paper proposes the syntactic category prediction method using decision trees for getting accurate parsing results. In parsing with segmentation, the segment is separately parsed and combined to generate the sentence structure. The syntactic category prediction would facilitate to select more accurate analysis structures after the partial parsing. Thus, we could improve the parsing accuracy by the prediction. We construct features for predicting syntactic categories from the parsed corpus of Wall Street Journal and generate decision trees. In the experiments, we show the performance comparisons with the predictions by human-built rules, trigram probability and neural networks. Also, we present how much the category prediction would contribute to improving the translation quality.

Three-Phase English Syntactic Analysis for Improving the Parsing Efficiency (영어 구문 분석의 효율 개선을 위한 3단계 구문 분석)

  • Kim, Sung-Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • The performance of an English-Korean machine translation system depends heavily on its English parser. The parser in this paper is a part of the rule-based English-Korean MT system, which includes many syntactic rules and performs the chart-based parsing. The parser generates too many structures due to many syntactic rules, so much time and memory are required. The rule-based parser has difficulty in analyzing and translating the long sentences including the commas because they cause high parsing complexity. In this paper, we propose the 3-phase parsing method with sentence segmentation to efficiently translate the long sentences appearing in usual. Each phase of the syntactic analysis applies its own independent syntactic rules in order to reduce parsing complexity. For the purpose, we classify the syntactic rules into 3 classes and design the 3-phase parsing algorithm. Especially, the syntactic rules in the 3rd class are for the sentence structures composed with commas. We present the automatic rule acquisition method for 3rd class rules from the syntactic analysis of the corpus, with which we aim to continuously improve the coverage of the parsing. The experimental results shows that the proposed 3-phase parsing method is superior to the prior parsing method using only intra-sentence segmentation in terms of the parsing speed/memory efficiency with keeping the translation quality.