• Title/Summary/Keyword: Intestinal villi

Search Result 84, Processing Time 0.033 seconds

Effects of Rice Bran and Wheat Bran on Intestinal Physiology and Small-bowel Morphology in Rats

  • Park, Young-Sun;Jang, Jae-Hee;Bae, Bok-Sun;Seo, Jung-Sook
    • Nutritional Sciences
    • /
    • v.3 no.1
    • /
    • pp.3-10
    • /
    • 2000
  • The present study was aimed at investigating the nutritional and physiological significance of rice bran as a source of dietary fiber as compared to pectin and wheat bran. The parameters for comparison included hypertrophy and morphology of intestines, stool weights and villus marker enzyme activity. For 6 weeks, 10 Sprague Dawley male rats were given one of six experimental diets: 1% cellulose control (CC), 5% pectin (P5), 5% rice bran(RB5), 10% rice bran(RB10), 5% wheat bran (WB5) or 10% wheat bran (WB10) based on the level of dietary fiber. Among experimental groups, food efficiency ratio and body weight gain was comparable. RB10 increased cecal and colonic tissue weights and content weights of cecum and colon as much as P5 did. Stool weight was positiviely correlated with colonic tissue weight (r=0.727, P<0.001), with colonic content weight(r=0.647, P<0.001). Small intestine length increased most in the P5 group, followed by the RB10 group. The scanning electron micrograph of jejunal villi from rice bran groups showed a leaf-shaped, smooth and regular pattern, whereas that of CC group produced a rather long shape. The wheat bran groups showed an irregular leafshaped pattern, and the pectin group typically produced leaf-shaped villi with surface damage. The activities of villus marker enzymes (maltase and sucrase) were higher in the bran-fed rats than in the control or pectin-fed rats. The results indicate than not only dietary fiber amounts but also fiber sources are closely related to the physiology and morphology of the large and small intestines in rats. Rice bran exerted effects on fecal output and trophic effects on the intestines similar to those of pectin.

  • PDF

Chronological observation of intestinal lesions of rots experimentally infected with Echinostoma hortense (흰쥐의 실험적 호르틴스극구흡충 감염에 있어서 장 병변에 대한 경시적 관찰)

  • 이순형;노태영
    • Parasites, Hosts and Diseases
    • /
    • v.28 no.1
    • /
    • pp.45-52
    • /
    • 1990
  • Intestinal histopathological changes due to infection with Echinostcma hortense (Trematoda) were studied in rats after experimental infection with the metacercariae. The metacercariae were obtained from the tadpoles of Rana nigrcmaculata, a second intermediate host infected in the laboratory. Total 18 albino rats(Sprague-Dawley) were given 200 matacercariae each and sacrificed on the day 1, 3, 7, 11, 22 or 44 post-infection(PI) Segments of- the small intestine at 1, 3, 5, 8 and 30 cm posterior to the pylorus(PTP) were rejected and studied histopathologically. 1. The flukes were seen to have intruded into the intervillous space in the upper small intestine at early stages(1∼3 days PI), however, they were located mainly in the intestinal lumen at later stages(7∼44 days PI) . The flukes were sucking and destroying the epithelial layers of villi with their oral and ventral suckers. 2. Histopathological changes of the intestine were recognizable in as early as 1∼3 days after infection, and the changes became severer as the infection progressed. 3. The intestinal mucosa was histopathologically characterized by villous atrophy and crypt hyperplasia throughout the infection period. Major villous changes were blunting, fusion, severe destruction and loss of epithelial layers of villi. Villous/crypt(V/C) height ratio was remarkably reduced from 3 : 1 in controls to 1 : 1 in severely infected animals. In the stroma of villi, inaamma- tory cell infiltrations, vascular congestion, edema, and/or fibrosis were recognized. The goblet cells were increased in number after 11 days PI. It was revealed in the present study that the pathological changes in the intestine of rats infected with E. hortense were chieay confined to the mucosal layer of the upper small intestine, however, the changes were very severe accompanying remarkable destruction of villi and loss of mucosal integrity, and persistent until 44 days PI.

  • PDF

Short-Term Changes in Gut Microflora and Intestinal Epithelium in X-Ray Exposed Mice

  • Tsujiguchi, Takakiyo;Yamaguchi, Masaru;Yamanouchi, Kanako
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.163-170
    • /
    • 2020
  • Background: Gut microflora contributes to the nutritional metabolism of the host and to strengthen its immune system. However, if the intestinal barrier function of the living body is destroyed by radiation exposure, the intestinal bacteria harm the health of the host and cause sepsis. Therefore, this study aims to trace short-term radiation-induced changes in the mouse gut microflora-dominant bacterial genus, and analyze the degree of intestinal epithelial damage. Materials and Methods: Mice were irradiated with 0, 2, 4, 8 Gy X-rays, and the gut microflora and intestinal epithelial changes were analyzed 72 hours later. Five representative genera of Actinobacteria, Firmicutes, and Bacteroidetes were analyzed in fecal samples, and the intestine was pathologically analyzed by Hematoxylin-Eosin and Alcian blue staining. In addition, DNA fragmentation was evaluated by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. Results and Discussion: The small intestine showed shortened villi and reduced number of goblet cells upon 8 Gy irradiation. The large intestine epithelium showed no significant morphological changes, but the number of goblet cells were reduced in a radiation dose-dependent manner. Moreover, the small intestinal epithelium of 8 Gy-irradiated mice showed significant DNA damaged, whereas the large intestine epithelium was damaged in a dose-dependent manner. Overall, the large intestine epithelium showed less recovery potential upon radiation exposure than the small intestinal epithelium. Analysis of the intestinal flora revealed fluctuations in lactic acid bacteria excretion after irradiation regardless of the morphological changes of intestinal epithelium. Altogether, it became clear that radiation exposure could cause an immediate change of their excretion. Conclusion: This study revealed changes in the intestinal epithelium and intestinal microbiota that may pave the way for the identification of novel biomarkers of radiation-induced gastrointestinal disorders and develop new therapeutic strategies to treat patients with acute radiation syndrome.

The Combined Effect of Adriamycin and Irradiation on the Small Intestinal Villi of Mice (방사선 조사와 Adriamycin 병용 투여가 마우스 소장에 미치는 영향에 관한 연구)

  • Hong, Seong-Eon;Ahn, Chi-Yul
    • Radiation Oncology Journal
    • /
    • v.4 no.1
    • /
    • pp.1-13
    • /
    • 1986
  • In order to clarify the effect of radiation on the mouse jejunal crypt cells by combined administration of administration and radiation and also to evaluate the enhancing effect of adriamycin, the authors performed this study by delivering single irradiation of 1,000 to 1,600 rad to the whole abdomen of mice by cobalt-60 teletherapy unit. In combination with adriyamycin treatment groups, the drug was administered as single dose of 10 mg/kg either 2 hours before or 4 hours after graded single dose,900 to 1,400 rad, of irradiation. The authors studied the quantitative changes of intestinal crypt cells by microcolony survival assay technique and the morphological changes of small intestinal villi by scanning electron microscope in mice following to combined therapy with adriamycin and irradiation, The average number of jejunal crypts per circumference was $130{\pm}16$ in control group. The mean lethal dose(Do) of each irradiation alone and combined therapy groups 2 hours before and 4 hours after irradiation, were 160, 170, and 170 rad in cell survival curves, respectively. The dose effect factor(DEF) of adriamycin in each groups of pre-irradiation and post-irradiation were 1.19 and 1.26, respectively. The conical shaped villi were noted on 1,200 rad in irradiation alone group and 1,000 rad in combined groups. For the proper clinical application we must be careful of the radiation injury to small bowel when the anticancer chemotherapy and radiation therapy to the abdomen and pelvic area are used as combined therapeutic modality.

  • PDF

Dietary Regulations of the Intestinal Barrier Function at Weaning

  • Bosi, Paolo;Gremokolini, Cyrien;Trevisi, Paolo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.4
    • /
    • pp.596-608
    • /
    • 2003
  • Weaning is a complex phase when the mammal suffers the action of different stressors that contribute to negatively affect the efficiency of the intestinal mucosa and of the whole local integrated system, that acts as barrier against any nocuous agent. The components of this barrier are mechanical, chemical, and bacteriological; immunological and not. The development of contact with a saprophyte microflora and the maintenance of feed intake after the interruption of motherly nutrition are essential for the maturation of an equilibrated local immune function and for a functional integrity of villi. Opportunities and limits of some dietary strategies that can contribute to reduce negative effects of weaning on health and performance are discussed. Knowledges on the possible mechanism of action of probiotics are upgraded, particularly for their supposed role in the balance between different immune functions (effectory/regulatory). Some tools to control pathogen microflora are reviewed (acids, herbs, immunoglobulin sources) and practical feeding systems are proposed.

A Case of Intestinal Lymphangiectasia (장림프관 확장증 1례)

  • Yim, Hyung Eun;Jung, Min Ji;Yoo, Kee Hwan;Hong, Young Sook;Lee, Joo Won;Kim, Soon Kyum
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.9
    • /
    • pp.921-925
    • /
    • 2003
  • Intestinal lymphangiectasia, one of the protein-losing gastroenteropathies, is an uncommon disease characterized by dilated intestinal lymphatics, enteric protein loss, edema, hypoalbuminemia, and lympocytopenia. Small bowel biopsy and CT have been used to confirm the diagnosis of intestinal lymphangiectasia. Small bowel biopsy shows collections of abnormal dilated lacteals in submucosa with distortion of villi and CT findings have been described as diffuse nodular thickening of the small bowel and as linear hypodense streaking densities in the small bowel caused by dilated lymphatic channels. Demonstration of increased enteric protein loss using $^{51}Cr-$, $^{131}I-$ or $^{99m}Tc-labeled$ albumin, timed measurement of fecal excretion of radioactivity or by measuring fecal clearance of alpha 1-antitrypsin can also help the diagnosis. We experienced a rare case of intestinal lymphangiectasia in an eight year old boy who presented with facial edema, abdominal distension and intermittent diarrhea. We report a patient with intestinal lymphangiectasia, in whom abdominal CT, $^{99m}Tc-labeled$ albumin scintitigraphy, and stool alpha 1-antitrypsin measurement played key roles in determining the diagnosis. A brief review of literature was made.

Expression of Cdc25B mRNA in Duodenal Mucosa of Chicken

  • Qin, Junhui;Zhang, Hui;Bao, Huijun;Zhou, Qiang;Liu, Yi;Xu, Chunsheng;Chu, Xiaohong;Chen, Qiusheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.530-536
    • /
    • 2010
  • Cdc25B is a mitotic regulator that might act as a starter phosphatase to initiate the positive feedback loop at the entry into mitotic (M) phase. In the present study, distribution of Cdc25B mRNA in duodenal mucosa of the chicken was demonstrated by means of in situ hybridization histochemistry (ISHH) using sense and antisense digoxigenin (DIG)-labeled RNA probes. The results showed that there were many labeled cells distributing in the duodenal mucosa of the adult chicken. Of these labeled cells, 81.60${\pm}$9.63% of Cdc25B mRNA positive cells was distributed in the basilar part and mid-portion of the intestinal gland and 36.21${\pm}$8.81% in the middle and basilar portion of villi of the small intestine of the chicken, respectively. Most of these labeled cells were positive in the regions of the stem cell and proliferation. The signals of ISHH decreased from basilar to upper part in the crypt of Lieberkuhn and weakened in the inferior villi of the duodenum. Moreover, the positive signals were both in the cytoplasm and cell nucleus. However, the labeled cells were negative in both the lamina muscularis mucosae and muscular layer. The results of ISHH suggested the existence of Cdc25B mRNA and vigorous proliferation activities in the duodenal mucosa of adult chicken, replenishing the cells which had sloughed off from the superior part of the villus. Our results provide some molecular evidence for a regular pattern of avian intestinal epitheliosis and functional partition and provide an approach to further study of the locations of Cdc25B in the chicken.

Application of immunohistochemical technique for diagnosis of porcine epidemic diarrhea (돼지 유행성 설사(Porcine Epidemic Diarrhea)의 진단을 위한 면역조직 화학적 기법의 응용)

  • Park, Nam-yong;Cho, Kyoung-oh
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.4
    • /
    • pp.805-813
    • /
    • 1994
  • Immunohistochemical study on the intestinal tissues obtained from the 21 pigs of the 14 terms in Korea in which the clinical and epidemiological features had indicated the possible outbreaks of porcine epidemic diarrhea(PED) was performed using the indirect immunofluorescence test and/or the immunoperoxidase method in order to detect PED viral antigens in the infected cells of the intestines, and histopathological features were described as well. By immunohistochemical analysis, PED viral antigens were detected in the epithelial cells covering the small intestinal villi and recognized slightly in the cells lining the colonic surface epithelium as well. Occasional fluorescence was also seen in a few intestinal crypt epithelium. On light microscopy, the piglets with PED showed marked villous atrophy and fusion, and severe enterocyte degeneration and desquamation. On the other hand, the older pigs more than 4 week old age was mild villous atrophy and fusion, severe villous epithelial cell proliferation, and moderate mononuclear cell infiltration.

  • PDF

Pathophysiology and protective approaches of gut injury in critical illness

  • Jung, Chang Yeon;Bae, Jung Min
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.1
    • /
    • pp.27-33
    • /
    • 2021
  • The gut is a complex organ that has played an important role in digestion, absorption, endocrine functions, and immunity. The gut mucosal barriers consist of the immunologic barrier and nonimmunologic barrier. During critical illnesses, the gut is susceptible to injury due to the induction of intestinal hyperpermeability. Gut hyperpermeability and barrier dysfunction may lead to systemic inflammatory response syndrome. Additionally, gut microbiota are altered during critical illnesses. The etiology of such microbiome alterations in critical illnesses is multifactorial. The interaction or systemic host defense modulation between distant organs and the gut microbiome is increasingly studied in disease research. No treatment modality exists to significantly enhance the gut epithelial integrity, permeability, or mucus layer in critically ill patients. However, multiple helpful approaches including clinical and preclinical strategies exist. Enteral nutrition is associated with an increased mucosal barrier in animal and human studies. The trophic effects of enteral nutrition might help to maintain the intestinal physiology, prevent atrophy of gut villi, reduce intestinal permeability, and protect against ischemia-reperfusion injury. The microbiome approach such as the use of probiotics, fecal microbial transplantation, and selective decontamination of the digestive tract has been suggested. However, its evidence does not have a high quality. To promote rapid hypertrophy of the small bowel, various factors have been reported, including the epidermal growth factor, membrane permeant inhibitor of myosin light chain kinase, mucus surrogate, pharmacologic vagus nerve agonist, immune-enhancing diet, and glucagon-like peptide-2 as preclinical strategies. However, the evidence remains unclear.

Indole-3-Carbinol Promotes Goblet-Cell Differentiation Regulating Wnt and Notch Signaling Pathways AhR-Dependently

  • Park, Joo-Hung;Lee, Jeong-Min;Lee, Eun-Jin;Hwang, Won-Bhin;Kim, Da-Jeong
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.290-300
    • /
    • 2018
  • Using an in vitro model of intestinal organoids derived from intestinal crypts, we examined effects of indole-3-carbinol (I3C), a phytochemical that has anticancer and aryl hydrocarbon receptor (AhR)-activating abilities and thus is sold as a dietary supplement, on the development of intestinal organoids and investigated the underlying mechanisms. I3C inhibited the in vitro development of mouse intestinal organoids. Addition of ${\alpha}$-naphthoflavone, an AhR antagonist or AhR siRNA transfection, suppressed I3C function, suggesting that I3C-mediated interference with organoid development is AhR-dependent. I3C increased the expression of Muc2 and lysozyme, lineage-specific genes for goblet cells and Paneth cells, respectively, but inhibits the expression of IAP, a marker gene for enterocytes. In the intestines of mice treated with I3C, the number of goblet cells was reduced, but the number of Paneth cells and the depth and length of crypts and villi were not changed. I3C increased the level of active nonphosphorylated ${\beta}$-catenin, but suppressed the Notch signal. As a result, expression of Hes1, a Notch target gene and a transcriptional repressor that plays a key role in enterocyte differentiation, was reduced, whereas expression of Math1, involved in the differentiation of secretory lineages, was increased. These results provide direct evidence for the role of AhR in the regulation of the development of intestinal stem cells and indicate that such regulation is likely mediated by regulation of Wnt and Notch signals.