• 제목/요약/키워드: Intestinal microflora

검색결과 302건 처리시간 0.025초

산채류가 장내세균의 In Vitro 생육에 미치는 영향 (Effects of Edible Herbs on the Growth of In Vitro Intestinal Microorganisms)

  • 한복진
    • Journal of Nutrition and Health
    • /
    • 제27권7호
    • /
    • pp.717-728
    • /
    • 1994
  • This study was aimed to screen edible herbs which control the composition of intestinal microflora. With in vitro experiments, we screened the water or ethanol extracts of about 60 edible herbs and wild plants in terms of the inhibition activity on the growth of the harmful Clostridium perfringens and growth promoting activity for the beneficial Bifidobacteria. The water extracts of mugwort and small water dropwort inhibited the growth of Cl.perfringens both in agar diffusion method and broth culture. On the other hand, the water extracts of petasites, mugwort, yellow day-lily and bitter cress have shown the promotion effect on the growth of Bifidobacterium longum. In the culture test using human feces as starter, the extracts of the above selected herbs increased the population of Bifidobacteria and Lactobacillus while they reduced the numbers of Cl.perfringens and E.coli.

  • PDF

Identification of intestinal microflora in rainbow trout

  • Lee, Soon-Deuk;Lee, Yeon-Hee
    • Journal of Microbiology
    • /
    • 제33권4호
    • /
    • pp.273-277
    • /
    • 1995
  • Although trout farming is well established in Korea, very little information is available on the composition of intestinal microflora in rainbow trout (Salmo gairdnerii). In 1994, from October through November, we investigated the composition and succession of intestinal bacteria. As fish grew, total viable counts increased dramatically until 45 days after fertilization when anaerobes started to appear on the media. After this time, they increased steadily. Ten aerobic generic were identified and Gram negative bacteria constituted 85% of total isolates. Among these, Pseudomonas, Eikenella, and Alcaligenes were the three major genera. Six anaerobic genera were isolated and identified. The ratio of anaerobes to aerobes was about 1 : 1 in adult trout and the composition of genera was changed under different conditions.

  • PDF

Metabolism of Ginsenoside Rg5, a Main Constituent Isolated from Red Ginseng, by Human Intestinal Microflora and Their Antiallergic Effect

  • Shin, Yong-Wook;Bae, Eun-Ah;Han, Myung-Joo;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권11호
    • /
    • pp.1791-1798
    • /
    • 2006
  • When ginsenoside Rg5, a main component isolated from red ginseng, was incubated with three human fecal microflora for 24 h, all specimens showed hydrolyzing activity: all specimens produced ginsenoside Rh3 as a main metabolite, but a minor metabolite $3{\beta},12{\beta}$-dihydroxydammar-21(22),24-diene (DD) was observed in two specimens. To evaluate the antiallergic effect of ginsenoside Rg5 and its metabolites, the inhibitory effect of ginsenoside Rg5 and its metabolite ginsenoside Rh3 against RBL-2H3 cell degranulation, mouse passive cutaneous anaphylaxis (PCA) reaction induced by the IgE-antigen complex, and mouse ear skin dermatitis induced by 12-O-tetradecanoilphorbol-13-acetate (TPA) were measured. Ginsenosides Rg5 and Rh3 potently inhibited degranulation of RBL-2H3 cells. These ginsenosides also inhibited mRNA expression of proinflammatory cytokines IL-6 and $TNF-{\alpha}$ in RBL-2H3 cells stimulated by IgE-antigen. Orally and intraperitoneally administered ginsenoside Rg3 and orally administered ginsenoside Rg5 to mice potently inhibited the PCA reaction induced by IgE-antigen complex. However, intraperitoneally administered ginsenoside Rg5 nearly did not inhibit the PCA reaction. These ginsenosides not only suppressed the swelling of mouse ears induced by TPA, but also inhibited mRNA expression of cyclooxygenase-2, $TNF-{\alpha}$, and IL-4 and activation of transcription factor NF-kB. These inhibitions of ginsenoside Rh3 were more potent than those of ginsenoside Rg5. These findings suggest that ginsenoside Rg5 may be metabolized in vivo to ginsenoside Rh3 by human intestinal microflora, and ginsenoside Rh3 may improve antiallergic diseases, such as rhinitis and dermatitis.

The Dietary Effects of Fermented Chlorella vulgaris (CBT®) on Production Performance, Liver Lipids and Intestinal Microflora in Laying Hens

  • Zheng, L.;Oh, S.T.;Jeon, J.Y.;Moon, B.H.;Kwon, H.S.;Lim, S.U.;An, B.K.;Kang, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권2호
    • /
    • pp.261-266
    • /
    • 2012
  • Fermented Chlorella vulgaris CBT$^{(R)}$ was evaluated for its effects on egg production, egg quality, liver lipids and intestinal microflora in laying hens. One hundred and eight Hy-line Brown layers (n = 108), 80 wk of age, were fed a basal diet supplemented with CBT$^{(R)}$ at the level of 0, 1,000 or 2,000 mg/kg, respectively for 42 d. Egg production was measured daily and egg quality was measured every two weeks. Five eggs from each replicate were collected randomly to determine egg quality. Egg production increased linearly with increasing levels of CBT$^{(R)}$ supplementation (p<0.05), although there was no significant effect of treatment on feed intake. Egg yolk color (p<0.001) and Haugh unit (p<0.01) improved linearly with increasing dietary CBT$^{(R)}$. Hepatic triacylglycerol level was linearly decreased with increasing dietary CBT$^{(R)}$ (p<0.05). The supplemental CBT$^{(R)}$ resulted in linear (p<0.001) and quadratic (p<0.01) response in population of cecal lactic acid bacteria. In conclusion, fermented Chlorella vulgaris supplemented to laying hen diets improved egg production, egg yolk color, Haugh unit and positively affected the contents of hepatic triacylglycerol and the profiles of cecal microflora.

Bifidobacterium longum HY8001의 섭취가 사람의 장내세균층 및 장내세균 효소에 미치는 영향 (Effect of Bifidobacterium longum HY8001 Administration on Human Fecal Bacterial Enzymes and Microflora)

  • 이완규;이상명;배형석;백영진
    • 한국미생물·생명공학회지
    • /
    • 제27권4호
    • /
    • pp.267-272
    • /
    • 1999
  • The effects of Bifidobacterium longum HY8001 supplement intake on the fecal microflora and fecal bacterial enzyme activity were studied in ten healthy human volunteers, before, during and after intake (respectively for 3 weeks). During intake of B. longum HY8001 supplement, fecal, $\beta$-glucuronidase and nitroreductase activities significantly decreased 44.6%(p<0.005) and 32.3%(p<0.01), respectively. Although numbers of major bacterial groups of fecal microflora were not affected by B. longum HY8001 intake for 3 weeks, the number of Bifidobacterium was significantly increased (p<0.05). This result indicates that intake of B. longum HY8001 might be potentially beneficial for the prevention and inhibition of colon cancer and improvement of human intestinal microflora composition.

  • PDF

Metabolic Activities of Ginseng and Its Constituents, Ginsenoside Rb1 and Rg1, by Human Intestinal Microflora

  • Choi, Jong-Ryul;Hong, Sung-Woon;Kim, Yu-Ri;Jang, Se-Eun;Kim, Nam-Jae;Han, Myung-Joo;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • 제35권3호
    • /
    • pp.301-307
    • /
    • 2011
  • To evaluate the difference in expressing pharmacological effects of ginseng by intestinal microflora between Koreans, metabolic activities of ginseng, ginsenoside $Rb_1$ and $Rg_1$ by 100 fecal specimens were measured. The ${\beta}$-glucosidase activity for p-nitrophenyl-${\beta}$-D-glucopyranoside was 0 to 0.42 mmol/min/mg and its average activity (mean${\pm}$SD) was $0.10{\pm}0.07$ mmol/min/mg. The metabolic activities of ginsenosides Rb1 and Rg1 were 0.01 to 0.42 and 0.01 to 0.38 pmol/min/mg, respectively. Their average activities were $0.25{\pm}0.08$ and $0.15{\pm}0.09$ pmol/min/mg, respectively. The compound K-forming activities from ginsenoside Rb1 and ginseng extract were 0 to 0.11 and 0 to 0.02 pmol/min/mg, respectively. Their average compound K-forming activities were $0.24{\pm}0.09$ pmol/min/ mg and $2.14{\pm}3.66$ fmol/min/mg, respectively. These activities all were not different between males and females, or between ages. Although compound K-forming activity from the aqueous extract of ginseng was low compared to that from ginenoside $Rb_1$, their profiles were similar to those of isolated compounds. Based on these findings, we believe that the intestinal bacterial metabolic activities of ginseng components are variable in individuals and may be used as selection markers for responders to ginseng.

The Role of Intestinal Microflora in Anti-Inflammatory Effect of Baicalin in Mice

  • Jung, Myung-Ah;Jang, Se-Eun;Hong, Sung-Woon;Hana, Myung-Joo;Kim, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제20권1호
    • /
    • pp.36-42
    • /
    • 2012
  • Baicalin, a main constituent of the rhizome of Scutellaria baicalensis, is metabolized to baicalein and oroxylin A in the intestine before its absorption. To understand the role of intestinal microflora in the pharmacological activities of baicalin, we investigated its anti-inflammatory effect in mice treated with and without antibiotics. Orally administered baicalin showed the anti-inflammatory effect in mice than intraperitoneally treated one, apart from intraperitoneally administered its metabolites, baicalein and oroxylin A, which potently inhibited LPS-induced inflammation. Of these metabolites, oroxylin A showed more potent anti-inflammatory effect. However, treatment with the mixture of cefadroxil, oxytetracycline and erythromycin (COE) significantly attenuated the anti-inflammatory effect of orally administered baicalin in mice. Treatment with COE also reduced intestinal bacterial fecal ${\beta}$-glucuronidase activity. The metabolic activity of human stools is significantly different between individuals, but neither between ages nor between male and female. Baicalin was metabolized to baicalein and oroxylin A, with metabolic activities of $1.427{\pm}0.818$ and $1.025{\pm}0.603$ pmol/min/mg wet weight, respectively. Baicalin and its metabolites also inhibited the expression of pro-inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$, and the activation of NF-${\kappa}B$B in LPS-stimulated peritoneal macrophages. Of them, oroxylin A showed the most potent inhibition. Based on these findings, baicalin may be metabolized to baicalein and oroxylin A by intestinal microflora, which enhance its anti-inflammatory effect by inhibiting NF-${\kappa}B$ activation.