• Title/Summary/Keyword: Intestinal cells

Search Result 763, Processing Time 0.022 seconds

Increased Intestinal Epithelial Cell Turnover and Intestinal Motility in Gymnophalloides seoi-Infected C57BL/6 Mice

  • Lee, Sang Hyub;Jung, Bong-Kwang;Park, Jae-Hwan;Shin, Eun-Hee;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.3
    • /
    • pp.273-280
    • /
    • 2014
  • The changing patterns of goblet cell hyperplasia, intestinal epithelial cell turnover, and intestinal motility were studied in ICR and C57BL/6 mice infected with Gymnophalloides seoi (Digenea: Gymnophallidae). Whereas ICR mice retained G. seoi worms until day 7 post-infection (PI), C57BL/6 mice showed a rapid worm expulsion within day 3 PI. Immunosuppression with Depo-Medrol significantly delayed the worm expulsion in C57BL/6 mice. Goblet cell counts were increased in both strains of mice, peaking at day 1 PI in C57BL/6 mice and slowly increasing until day 7 PI in ICR mice. In C57BL/6 mice infected with G. seoi, newly proliferating intestinal epithelial cells were remarkably increased in the crypt, and the increase was the highest at day 1 PI. However, in ICR mice, newly proliferating intestinal epithelial cells increased slowly from day 1 to day 7 PI. Intestinal motility was increased in G. seoi-infected mice, and its chronological pattern was highly correlated with the worm load in both strains of mice. Meanwhile, immunosuppression of C57BL/6 mice abrogated the goblet cell proliferation, reduced the epithelial cell proliferation, and suppressed the intestinal motility. Goblet cell hyperplasia, increased intestinal epithelial cell turnover, and increased intestinal motility should be important mucosal defense mechanisms in G. seoi-infected C57BL/6 mice.

Short-Term Changes in Gut Microflora and Intestinal Epithelium in X-Ray Exposed Mice

  • Tsujiguchi, Takakiyo;Yamaguchi, Masaru;Yamanouchi, Kanako
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.163-170
    • /
    • 2020
  • Background: Gut microflora contributes to the nutritional metabolism of the host and to strengthen its immune system. However, if the intestinal barrier function of the living body is destroyed by radiation exposure, the intestinal bacteria harm the health of the host and cause sepsis. Therefore, this study aims to trace short-term radiation-induced changes in the mouse gut microflora-dominant bacterial genus, and analyze the degree of intestinal epithelial damage. Materials and Methods: Mice were irradiated with 0, 2, 4, 8 Gy X-rays, and the gut microflora and intestinal epithelial changes were analyzed 72 hours later. Five representative genera of Actinobacteria, Firmicutes, and Bacteroidetes were analyzed in fecal samples, and the intestine was pathologically analyzed by Hematoxylin-Eosin and Alcian blue staining. In addition, DNA fragmentation was evaluated by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. Results and Discussion: The small intestine showed shortened villi and reduced number of goblet cells upon 8 Gy irradiation. The large intestine epithelium showed no significant morphological changes, but the number of goblet cells were reduced in a radiation dose-dependent manner. Moreover, the small intestinal epithelium of 8 Gy-irradiated mice showed significant DNA damaged, whereas the large intestine epithelium was damaged in a dose-dependent manner. Overall, the large intestine epithelium showed less recovery potential upon radiation exposure than the small intestinal epithelium. Analysis of the intestinal flora revealed fluctuations in lactic acid bacteria excretion after irradiation regardless of the morphological changes of intestinal epithelium. Altogether, it became clear that radiation exposure could cause an immediate change of their excretion. Conclusion: This study revealed changes in the intestinal epithelium and intestinal microbiota that may pave the way for the identification of novel biomarkers of radiation-induced gastrointestinal disorders and develop new therapeutic strategies to treat patients with acute radiation syndrome.

Inhibition of Escherichia coli O157:H7 Attachment by Interactions Between Lactic Acid Bacteria and Intestinal Epithelial Cells

  • Kim, Young-Hoon;Kim, Sae-Hun;Whang, Kwang-Youn;Kim, Young-Jun;Oh, Se-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1278-1285
    • /
    • 2008
  • The intestinal epithelial cell (IEC) layer of the intestinal tract makes direct contact with a number of microbiota communities, including bacteria known to have deleterious health effects. IECs possess innate protective strategies against pathogenic challenge, which primarily involve the formation of a physicochemical barrier. Intestinal tract mucins are principal components of the mucus layer on epithelial surfaces, and perform a protective function against microbial damage. However, little is currently known regarding the interactions between probiotics/pathogens and epithelial cell mucins. The principal objective of this study was to determine the effects of Lactobacillus on the upregulation of MUC2 mucin and the subsequent inhibition of E. coli O157:H7 attachment to epithelial cells. In the current study, the attachment of E. coli O157:H7 to HT-29 intestinal epithelial cells was inhibited significantly by L. acidophilus A4 and its cell extracts. It is also important to note that the expression of MUC2 mucin was increased as the result of the addition of L. acidophilus A4 cell extracts (10.0 mg/ml), which also induced a significant reduction in the degree to which E. coli O157:H7 attached to epithelial cells. In addition, the mRNA levels of IL-8, IL-1$\beta$, and TNF-$\alpha$ in HT-29 cells were significantly induced by treatment with L. acidophilus A4 extracts. These results indicate that MUC2 mucin and cytokines are important regulatory factors in the immune systems of the gut, and that selected lactobacilli may be able to induce the upregulation of MUC2 mucin and specific cytokines, thereby inhibiting the attachment of E. coli O157:H7.

Immunohistochemical studies in the intestine of the duck, Anas platyrhynchos platyrhyncos Linne, with ages (연령에 따른 청둥오리 장관 내분비세포에 대한 면역조직화학적 연구)

  • Lee, Jae-hyun;Ku, Sae-kwang;Lee, Hyeung-sik
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • The relative frequency and distribution of bovine chromogranin(BCG)-, serotonin-, somatostatin(SOM)- and S-100 protein-immunoreactive cells in the intestinal tract of the duck (Anas platyrhynchos platyrhyncos, Linne) with ages were studied using immunohistochemical methods. BCG-immunoreactive cells were detected in duodenum on 23 days of incubation. Thereafter these cells were occurred throughout the intestine. SOM-immunoreactive cells were detected in the small intestine from hatching to 9 weeks. Thereafter they were also observed in colon. Serotonin-immunoreactive cells were detected throughout the intestinal tracts after hatching. These immunoreactive cells were increased with ages except that BCG-immunoreactive cells were decreased with ages from 6 weeks after hatching. BCG- and serotonin-immunoreactive cells were most frequently detected in colon regions and SOM-immunoreactive cells in duodenum regions, but no S-100 protein-immunoreactive cells were detected in this study.

  • PDF

Mucosal Immune Responses of Mice Experimentally Infected with Pygidiopsis summa (Trematoda: Heterophyidae)

  • Chai, Jong-Yil;Park, Young-Jin;Park, Jae-Hwan;Jung, Bong-Kwang;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • Mucosal immune responses against Pygidiopsis summa (Trematoda: Heterophyidae) infection were studied in ICR mice. Experimental groups consisted of group 1 (uninfected controls), group 2 (infection with 200 metacercariae), and group 3 (immunosuppression with Depo-Medrol and infection with 200 metacercariae). Worms were recovered in the small intestine at days 1, 3, 5, and 7 post-infection (PI). Intestinal intraepithelial lymphocytes (IEL), mast cells, and goblet cells were counted in intestinal tissue sections stained with Giemsa, astra-blue, and periodic acid-Schiff, respectively. Mucosal IgA levels were measured by ELISA. Expulsion of P. summa from the mouse intestine began to occur from days 3-5 PI which sustained until day 7 PI. The worm expulsion was positively correlated with proliferation of IEL, mast cells, goblet cells, and increase of IgA, although in the case of mast cells significant increase was seen only at day 7 PI. Immunosuppression suppressed all these immune effectors and inhibited worm reduction in the intestine until day 7 PI. The results suggested that various immune effectors which include IEL, goblet cells, mast cells, and IgA play roles in regulating the intestinal mucosal immunity of ICR mice against P. summa infection.

Aqueous Extract of Schizandra chinensis Suppresses Dextran Sulfate Sodiuminduced Generation of IL-8 and ROS in the Colonic Epithelial Cell Line HT-29

  • Lee, Young-Mi;Lee, Kang-Soo;Kim, Dae-Ki
    • Natural Product Sciences
    • /
    • v.15 no.4
    • /
    • pp.185-191
    • /
    • 2009
  • Intestinal epithelial cells (IEC) play an important role in the mucosal immune system. IEC-derived mediators of inflammatory cascades play a principal role in the development of colon inflammation. The aim of this study was to investigate the inhibitory effect of aqueous extracts of Schizandra chinensis fruits (SC-Ex) on the production of inflammatory mediators by the human colonic epithelial cells. HT-29 cells were stimulated with dextran sulfate sodium in the presence or absence of SC-Ex to examine the cytoprotection and production of IL-8 and reactive oxygen species (ROS). It was shown that dextran sulfate sodium (DSS) caused the reduction of cell viability and production of IL-8 and ROS in DSS-treated HT-29 cells. We observed that the treatment of SC-Ex protected significantly cell proliferation from DSS-induced damage in dose-dependent manner. SC-Ex (10 and 100 ${\mu}g$/ml) also suppressed DSS-induced production of IL-8 mRNA and protein. Moreover, DSS-induced ROS production was inhibited markedly by the treatment of 100 ${\mu}g$/ml SC-Ex. These results suggest that SC-Ex has the protective effects on DSS-induced cell damage and the release of inflammatory mediators in the intestinal epithelial cells.

Avian Gut Immune System and Local Responses to Eimerial Parasites (조류의 장내 면역체계와 콕시듐(Eimeria)기생충들에 대한 국소면역 반응)

  • Lillehoj, H.S.
    • Korean Journal of Poultry Science
    • /
    • v.26 no.2
    • /
    • pp.131-144
    • /
    • 1999
  • Coccidiosis, an intestinal infection caused by intracellular protozoan parasites belonging to several different species of Eimeria seriously impairs the growth and feed utilization of livestock and poultry. Due to complex life cycle of organism and intricate host immune responses to Elmeria, coccidia vaccine development has been difficult. Understanding of basic imunobiology of pertinent host-parasite interactions is necessary for the development of novel control strategy. Although chickens infected with Eimeria spp. produce parasite-specific antibodies in both the circulation and mucosal secretions, antibody mediated responses play a minor role in protection gainst coccidiosis. Rather, increasing evidence show that cell-mediated immunity plays a major role in resistance to coccidiosis. T-lymphocytes appear to respond to coccidiosis both through cytokine production and a direct cytotoxic attack on infected cells. The exact mechanisms by which T-cells eliminate the parasites, however, remain to be investigated. Since it is crucial to understand the intestinal immune system in order to develop an immunological control strategy against any intestinal immune system in order to develop an immunological control strategy against any intestinal diseases, this presentation will summarize our current understanding of the avian intestinal immune system and mucosal immune responses to Eimeria, to provide a conceptual overview of the complex molecular and cellular events involved in intestinal immune responses to enteric pathogens.

  • PDF

Insulin-like growth factor가 소장 점막 세포 증식에 미치는 영향

  • 윤정한
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 1995.11b
    • /
    • pp.11-34
    • /
    • 1995
  • Growth hormone (GH) plays a key role in regulating postnatal growth and can stimulate growth of animals by acting directly on specific receptors on the plasma membrane of tissues or indirectly through stimulating insulin-like growth factor (IGF)-I synthesis and secretion by the liver and other tissues. IGF-I and IGF-Ⅱ are polypeptides with structural similarity with proinsulin that stimulate cell proliferation by endocrine, paracrine and autocrine mechanisms. The initial event in the metabolic action of IGFs on target cells appears to be their binding to specific receptors on the plasma membrane. Current evidence indicates that the mitogenic actions of both IGFs are mediated primarily by binding to the type I IGF receptors, and that IGF action is also mediated by interactions with IGF-binding proteins (IGFBPs). Six distinct IGFBPs have been identified that are characterized by cell-specific interaction, transcriptional and post-translational regulation by many different effectors, and the ability to either potentiate or inhibit IGF actions. Nutritional deficiencies can have their devastating consequence during growth. Although IGF-I is the major mediator of GH's action on somatic growth, nutritional status of an organism is a critical regulator of IGF-I and IGFBPs. Various nutrient deficiencies result in decreased serum IGF-I levels and altered IGFBP levels, but the blood levels of GH are generally unchanged or elevated in malnutrition. Effects of protein, energy, vitamin C and D, and zinc on serum IGF and IGFBP levels and tissue mRNA levels were reviewed in the text. Multiple factors are involved in the regulation of intestinal epithelial cell growth and differentiation. Among these factors the nutritional status of individuals is the most important. The intestinal epithelium is an important site for mitogenic action of the IGFs in vivo, with exogenous IGF-I stimulating mucosal hyperplasia. Therefore, the IGF system appears to provide and important mechanism linking nutrition and the proliferation of intestinal epithelial cells. In order to study the detailed mechanisms by which intestinal mucosa is regulated, we have utilized IEC-6 cells, an intestinal epithelial cell line and Caco-2 cells, a human colon adenocarcinoma cell line. Like intestinal crypt cells analyzed in vivo or freshly isolated intestinal epithelial cells, IEC-6 cells and Caco-2 cells possess abundant quatities of both type Ⅰ and type Ⅱ IGF receptors. Exogenous IGFs stimulate, whereas addition of IGFBP-2 inhibits IEC-6 cell proliferation. To investigate whether endogenously secreted IGFBP-2 inhibit proliferation, IEC-6 cells were transfected with a full-length rat IGFBP-2 cDNA anti-sense expression construct. IEC-6 cells transfected with anti-sense IGFBP-2 protein in medium. These cells grew at a rate faster than the control cells indicating that endogenous IGFBP-2 inhibits proliferation of IEC-6 cells, probably by sequestering IGFs. IEC-6 cells express many characteristics of enterocyte, but do not undergo differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation after reaching confluency. We have demonstrated that Caco-2 cells produce IGF-Ⅱ, IGFBP-2, IGFBP-3, and an as yet unidentified 31,000 Mr IGFBP, and that both mRNA and peptide secretion of IGFBP-2 and IGFBP-3 increased, but IGFBP-4 mRNA and protein secretion decreased after the cells reached confluency. These changes occurred in parallel to and were coincident with differentiation of the cells, as measured by expression of sucrase-isomaltase. In addition, Caco-2 cell clones forced to overexpress IGFBP-4 by transfection with a rat IGFBP-4 cDNA construct exhibited a significantly slower growth rate under serum-free conditions and had increased expression of sucrase-isomaltase compared with vector control cells. These results indicate that IGFBP-4 inhibits proliferation and stimulates differentiation of Caco-2 cells, probably by inhibiting the mitogenic actions of IGFs.

  • PDF

Immunohistochemical Studv on the Gastrin, Somatostatin and Serotonin Cells in the Gastric and Small Intestinal Mucosa of Rat during Development (발생기 흰쥐 위와 소장점막의 gastrin, somatostatin 및 serotonin세포에 대한 면역조직화학적연구)

  • 최병태;조운복
    • The Korean Journal of Zoology
    • /
    • v.37 no.4
    • /
    • pp.478-487
    • /
    • 1994
  • The developmental changes of three enteroendocrine cells, i.e. gastrln, somatostatin and serotonin, of gastric and small intestinal mucosa in pre- and postnatal rat were examined by peroxidase-antiperoxidase (PAP) method. In the course of development, gastrin cells were obsenred in the pyloric gland region and the whole part of small intestine, while somstostatin and serotonin cells in the whole gastric gland region and small intestine. More entroendocrine cells were detected in the pyloric gland region and duodenum than in the other portion. In the stomach, gastrin, somatostatin and serotonin ceils were first obsenred in the pyloric Bland region on 17, 19 and 19 days of gestation respectively. The small intestinal gastrin and serotonin cells were first appeared in the duodenum and iriunum on 17 and 15 days of gestation respectively, and somatostBtin cells in duodenum on 17 days of gestation. The number of cells examined from the stomach were increased from fetal to weanling period and showed a decrease during adult period: the notable increase was shown at the end of suckling period or at early weanling period. The cells of the small intestine increased from fetal to suckling period, especially, these cells markedly increased at the end of fetal period or at early suckling period, and decreased from weanling period. The shape of these cells was oval or fusiform during fetal period. In the stomach, most of gastrin cells turned out to be oval and open-type from suckling period, while the remaining two tripes of cells were oval and open- or closed-type. In the small intestine, 311%Ves of cells examined were changed to fusiform and open-type from the end of fetal period. Three types of cell were distributed over the stratified epithelium on 15 and 17 days of gestation. In the stomach, these cells were distributed lower gastric pit and gland from the following fetal period, and were detected mainly on the upper part of gland from suckling period, and then obsenred on the whole part of gland. In the small intestine, most of cells distributed over only between epithelium of villi on 19 days of gestation, increased in number on the crypt from following fetal period, and also observed abundantly in the crypt at adult period.

  • PDF

Modulation of the inflammatory process and interaction of THP-1 monocytes with intestinal epithelial cells by glasswort (Salicornia herbacea L.) extracts (인간 단핵구 THP-1의 염증반응 및 장관상피세포와의 상호작용에 미치는 퉁퉁마디 추출물 분획의 영향)

  • Choi, Yoo Mi;Kang, Smee;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.378-383
    • /
    • 2016
  • The glasswort is an edible halophyte demonstrating various physiological effects including anti-inflammatory activity. In the present study, the effects of glasswort extracts on inflammatory events and interactions of THP-1 monocytes with intestinal epithelial cells were investigated. Five solvent fractions, including the ethylether fraction (Fr.E), were prepared from a 70% methanol extract of glasswort. THP-1 monocytes underwent differentiation by phorbol 12-myristate 13-acetate treatment and were then activated by lipopolysaccharide (LPS), which induced cyclooxygenase (COX)-2 expression. None of the glasswort fractions tested alone induced COX-2 in differentiated THP-1 cells. Fr.E, however, enhanced LPS-induced COX-2 expression in differentiated THP-1 cells. Culture media of THP-1 cells treated with each fraction stimulated the growth of normal intestinal INT-407 cells more prominently than that of HT-29 colon cancer cells. COX-2 expression in HT-29 cells was inhibited when the cells were exposed to the THP-1 culture medium treated with Fr.E. Thus, glasswort could modulate the interaction between immune cells and intestinal cells.