• Title/Summary/Keyword: Intestinal barrier

검색결과 101건 처리시간 0.027초

Dietary Regulations of the Intestinal Barrier Function at Weaning

  • Bosi, Paolo;Gremokolini, Cyrien;Trevisi, Paolo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권4호
    • /
    • pp.596-608
    • /
    • 2003
  • Weaning is a complex phase when the mammal suffers the action of different stressors that contribute to negatively affect the efficiency of the intestinal mucosa and of the whole local integrated system, that acts as barrier against any nocuous agent. The components of this barrier are mechanical, chemical, and bacteriological; immunological and not. The development of contact with a saprophyte microflora and the maintenance of feed intake after the interruption of motherly nutrition are essential for the maturation of an equilibrated local immune function and for a functional integrity of villi. Opportunities and limits of some dietary strategies that can contribute to reduce negative effects of weaning on health and performance are discussed. Knowledges on the possible mechanism of action of probiotics are upgraded, particularly for their supposed role in the balance between different immune functions (effectory/regulatory). Some tools to control pathogen microflora are reviewed (acids, herbs, immunoglobulin sources) and practical feeding systems are proposed.

Lactobacillus casei LC01 Regulates Intestinal Epithelial Permeability through miR-144 Targeting of OCLN and ZO1

  • Hou, Qiuke;Huang, Yongquan;Wang, Yan;Liao, Liu;Zhu, Zhaoyang;Zhang, Wenjie;Liu, Yongshang;Li, Peiwu;Chen, Xinlin;Liu, Fengbin
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권10호
    • /
    • pp.1480-1487
    • /
    • 2020
  • Our previous report determined that miR-144 is a key regulator of intestinal epithelial permeability in irritable bowel syndrome with diarrhea (IBS-D) rats. Recent evidence has shown that lactobacilli play an important role in the relief of IBS-D symptoms. However, few studies have addressed the mechanisms by which microRNAs and lactobacilli exert their beneficial effects on intestinal epithelial permeability. Hence, to elucidate whether miRNAs and lactobacilli play roles in intestinal epithelial barrier regulation, we compared miRNA expression levels in intestinal epithelial cells (IECs) under Lactobacillus casei (L. casei LC01) treatment. IECs and L. casei LC01 were co-cultured and then subjected to microRNA microarray assay. qRT-PCR, western blot and ELISA were used to detect the expression of occludin (OCLN) and zonula occludens 1 (ZO1/TJP1). The interaction between miRNAs and L. casei LC01 acting in IECs was investigated through transfection of RNA oligoribonucleotides and pcDNA 3.1 plasmid. The results are as follows: 1) L. casei LC01 decreased the expression of miR-144 and FD4 and promoted OCLN and ZO1 expression in IECs; 2) L. casei LC01 enhanced the barrier function of IECs via downregulation of miR-144 and upregulation of OCLN and ZO1; 3) Under L. casei LC01 treatment, OCLN and ZO1 overexpression could partially eliminate the promoting effect of miR-144 on intestinal permeability in IECs. Our results demonstrate that L. casei LC01 regulates intestinal permeability of IECs through miR-144 targeting of OCLN and ZO1. L. casei LC01 can be a possible therapeutic target for managing dysfunction of the intestinal epithelial barrier.

Curcumin utilizes the anti-inflammatory response pathway to protect the intestine against bacterial invasion

  • Cho, Jin Ah;Park, Eunmi
    • Nutrition Research and Practice
    • /
    • 제9권2호
    • /
    • pp.117-122
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Curcumin, a major component of the Curcuma species, contains antioxidant and anti-inflammatory properties. Although it was found to induce apoptosis in cancer cells, the functional role of curcumin as well as its molecular mechanism in anti-inflammatory response, particularly in intestinal cells, has been less investigated. The intestine epithelial barrier is the first barrier and the most important location for the substrate coming from the lumen of the gut. SUBJECTS/METHODS: We administered curcumin treatment in the human intestinal epithelial cell lines, T84 and Caco-2. We examined endoplasmic reticulum (ER) stress response by thapsigargin, qPCR of XBP1 and BiP, electrophysiology by wild-type cholera toxin in the cells. RESULTS: In this study, we showed that curcumin treatment reduces ER stress and thereby decreases inflammatory response in human intestinal epithelial cells. In addition, curcumin confers protection without damaging the membrane tight junction or actin skeleton change in intestine epithelial cells. Therefore, curcumin treatment protects the gut from bacterial invasion via reduction of ER stress and anti-inflammatory response in intestinal epithelial cells. CONCLUSIONS: Taken together, our data demonstrate the important role of curcumin in protecting the intestine by modulating ER stress and inflammatory response post intoxication.

Understanding intestinal health in nursery pigs and the relevant nutritional strategies

  • Kim, Sung Woo;Duarte, Marcos E.
    • Animal Bioscience
    • /
    • 제34권3_spc호
    • /
    • pp.338-344
    • /
    • 2021
  • In the modern pig production, pigs are weaned at early age with immature intestine. Dietary and environmental factors challenge the intestine, specifically the jejunum, causing inflammation and oxidative stress followed by destruction of epithelial barrier and villus structures in the jejunum. Crypt cell proliferation increases to repair damages in the jejunum. Challenges to maintain the intestinal health have been shown to be related to changes in the profile of mucosa-associated microbiota in the jejunum of nursery pigs. All these processes can be quantified as biomarkers to determine status of intestinal health related to growth potential of nursery pigs. Nursery pigs with impaired intestinal health show reduced ability of nutrient digestion and thus reduced growth. A tremendous amount of research effort has been made to determine nutritional strategies to maintain or improve intestinal health and microbiota in nursery pigs. A large number of feed additives have been evaluated for their effectiveness on improving intestinal health and balancing intestinal microbiota in nursery pigs. Selected prebiotics, probiotics, postbiotics, and other bioactive compounds can be used in feeds to handle issues with intestinal health. Selection of these feed additives should aim modulating biomarkers indicating intestinal health. This review aims to define intestinal health and introduce examples of nutritional approaches to handle intestinal health in nursery pigs.

Dietary spray-dried plasma improves intestinal morphology of mated female mice under stress condition

  • Liu, Yanhong;Choe, Jeehwan;Kim, Sheena;Kim, Byeonghyeon;Campbell, Joy M.;Polo, Javier;Crenshaw, Joe D.;Pettigrew, James E.;Song, Minho
    • Journal of Animal Science and Technology
    • /
    • 제60권6호
    • /
    • pp.10.1-10.6
    • /
    • 2018
  • Background: Stress causes inflammation that impairs intestinal barrier function. Dietary spray-dried plasma (SDP) has recognized anti-inflammatory effects and improvement of gut barrier function. Therefore, the purpose of this study was to investigate the effects of dietary SDP on intestinal morphology of mated female mice under stress condition. Results: Villus height, width, and area of small intestines were low on gestation day (GD) 3 or 4 under stress conditions, and higher later (Time, P < 0.05). Crypt depth of colon was low on GD 4 and higher later (Time, P < 0.05). Meanwhile, the SDP treatments improved (P < 0.05) intestinal morphology, indicated by increased villus height, villus width, villus area, and ratio between villus height and crypt depth of small intestines and crypt depth of colon, and by decreased crypt depth of small intestines, compared with the control diet. The SDP treatments also increased (P < 0.05) the number of goblet cells in intestines compared with the control diet. There were no differences between different levels of SDP. Conclusion: Dietary SDP improves intestinal morphology of mated female mice under stress condition.

Gene expression profiling after ochratoxin A treatment in small intestinal epithelial cells from pigs

  • Jung Woong, Yoon;Sang In, Lee
    • Journal of Animal Science and Technology
    • /
    • 제64권5호
    • /
    • pp.842-853
    • /
    • 2022
  • Ochratoxin A (OTA) is a well-known mycotoxin that causes disease through the ingestion of contaminated food or feed, for example, in the porcine industry. The intestinal epithelium acts as the first barrier against food contamination. We conducted a study on the exposure of the porcine intestinal epithelium to OTA. We used the intestinal porcine epithelial cell line IPEC-J2 as an in vitro model to evaluate the altered molecular mechanisms following OTA exposure. Gene expression profiling revealed that OTA upregulated 782 genes and downregulated 896, totalling 1678 differentially expressed genes. Furthermore, immunofluorescence, quantitative real-time polymerase chain reaction, and western blotting confirmed that OTA damages the tight junction protein ZO-1. Moreover, OTA activated the expression of inflammatory genes (IL-6, IL-8, IL-10, NF-kB, TLR4, and TNF-α). In summary, this study confirmed that OTA alters various molecular mechanisms and has several adverse effects on IPEC-J2 cells.

Metabolites of Latilactobacillus curvatus BYB3 and Indole Activate Aryl Hydrocarbon Receptor to Attenuate Lipopolysaccharide-Induced Intestinal Barrier Dysfunction

  • Wang, Xing;Yong, Cheng Chung;Oh, Sejong
    • 한국축산식품학회지
    • /
    • 제42권6호
    • /
    • pp.1046-1060
    • /
    • 2022
  • This study aimed to investigate the effects of the metabolites of Latilactobacillus curvatus BYB3 and indole-activated aryl hydrocarbon receptor (AhR) to increase the tight junction (TJ) proteins in an in vitro model of intestinal inflammation. In a Western blot assay, the metabolites of L. curvatus BYB3 reduced the TJ demage in lipoploysaccharide (LPS) stimulated-Caco-2 cells. This reduction was a result of upregulating the expression of TJ-associated proteins and suppressing the nuclear factor-κB signaling. Immunofluorescence images consistently revealed that LPS disrupted and reduced the expression of TJ proteins, while the metabolites of L. curvatus BYB3 and indole reversed these alterations. The protective effects of L. curvatus BYB3 were observed on the intestinal barrier function when measuring transepithelial electrical resistance. Using high-performance liquid chromatography analysis the metabolites, the indole-3-latic acid and indole-3-acetamide concentrations were found to be 1.73±0.27 mg/L and 0.51±0.39 mg/L, respectively. These findings indicate that the metabolites of L. curvatus BYB3 have increasing mRNA expressions of cytochrome P450 1A1 (CYP1A1) and AhR, and may thus be applicable for therapy of various inflammatory gut diseases as postbiotics.

Effects of 17β-Estradiol on Colonic Permeability and Inflammation in an Azoxymethane/Dextran Sulfate Sodium-Induced Colitis Mouse Model

  • Song, Chin-Hee;Kim, Nayoung;Sohn, Sung Hwa;Lee, Sun Min;Nam, Ryoung Hee;Na, Hee Young;Lee, Dong Ho;Surh, Young-Joon
    • Gut and Liver
    • /
    • 제12권6호
    • /
    • pp.682-693
    • /
    • 2018
  • Background/Aims: Intestinal barrier dysfunction is a hallmark of inflammatory bowel diseases (IBDs) such as ulcerative colitis. This dysfunction is caused by increased permeability and the loss of tight junctions in intestinal epithelial cells. The aim of this study was to investigate whether estradiol treatment reduces colonic permeability, tight junction disruption, and inflammation in an azoxymethane (AOM)/dextran sodium sulfate (DSS) colon cancer mouse model. Methods: The effects of $17{\beta}$-estradiol (E2) were evaluated in ICR male mice 4 weeks after AOM/DSS treatment. Histological damage was scored by hematoxylin and eosin staining and the levels of the colonic mucosal cytokine myeloperoxidase (MPO) were assessed by enzyme-linked immunosorbent assay (ELISA). To evaluate the effects of E2 on intestinal permeability, tight junctions, and inflammation, we performed quantitative real-time polymerase chain reaction and Western blot analysis. Furthermore, the expression levels of mucin 2 (MUC2) and mucin 4 (MUC4) were measured as target genes for intestinal permeability, whereas zonula occludens 1 (ZO-1), occludin (OCLN), and claudin 4 (CLDN4) served as target genes for the tight junctions. Results: The colitis-mediated induced damage score and MPO activity were reduced by E2 treatment (p<0.05). In addition, the mRNA expression levels of intestinal barrier-related molecules (i.e., MUC2, ZO-1, OCLN, and CLDN4) were decreased by AOM/DSS-treatment; furthermore, this inhibition was rescued by E2 supplementation. The mRNA and protein expression of inflammation-related genes (i.e., KLF4, NF-${\kappa}B$, iNOS, and COX-2) was increased by AOM/DSS-treatment and ameliorated by E2. Conclusions: E2 acts through the estrogen receptor ${\beta}$ signaling pathway to elicit anti-inflammatory effects on intestinal barrier by inducing the expression of MUC2 and tight junction molecules and inhibiting pro-inflammatory cytokines.

Change in intestinal alkaline phosphatase activity is a hallmark of antibiotic-induced intestinal dysbiosis

  • Wijesooriya Mudhiyanselage Nadeema Dissanayake;Malavige Romesha Chandanee;Sang-Myeong Lee;Jung Min Heo;Young-Joo Yi
    • Animal Bioscience
    • /
    • 제36권9호
    • /
    • pp.1403-1413
    • /
    • 2023
  • Objective: Intestinal alkaline phosphatase (IAP) maintains intestinal homeostasis by detoxifying bacterial endotoxins and regulating gut microbiota, and lipid absorption. Antibiotics administered to animals can cause gut dysbiosis and barrier disruption affecting animal health. Therefore, the present study sought to investigate the role of IAP in the intestinal environment in dysbiosis. Methods: Young male mice aged 9 weeks were administered a high dose of antibiotics to induce dysbiosis. They were then sacrificed after 4 weeks to collect the serum and intestinal organs. The IAP activity in the ileum and the level of cytokines in the serum samples were measured. Quantitative real-time polymerase chain reaction analysis of RNA from the intestinal samples was performed using primers for tight junction proteins (TJPs) and proinflammatory cytokines. The relative intensity of IAP and toll-like receptor 4 (TLR4) in intestinal samples was evaluated by western blotting. Results: The IAP activity was significantly lower in the ileum samples of the dysbiosis-induced group compared to the control. The interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha concentrations were significantly higher in the ileum samples of the dysbiosis-induced group. The RNA expression levels of TJP2, claudin-3, and claudin-11 showed significantly lower values in the intestinal samples from the dysbiosis-induced mice. Results from western blotting revealed that the intensity of IAP expression was significantly lower in the ileum samples of the dysbiosis-induced group, while the intensity of TLR4 expression was significantly higher compared to that of the control group without dysbiosis. Conclusion: The IAP activity and relative mRNA expression of the TJPs decreased, while the levels of proinflammatory cytokines increased, which can affect intestinal integrity and the function of the intestinal epithelial cells. This suggests that IAP is involved in mediating the intestinal environment in dysbiosis induced by antibiotics and is an enzyme that can potentially be used to maintain the intestinal environment in animal health care.

Establishing porcine jejunum-derived intestinal organoids to study the function of intestinal epithelium as an alternative for animal testing

  • Bo Ram Lee;Sun A Ock;Mi Ryung Park;Min Gook Lee;Sung June Byun
    • 한국동물생명공학회지
    • /
    • 제39권1호
    • /
    • pp.2-11
    • /
    • 2024
  • Background: The small intestine plays a crucial role in animals in maintaining homeostasis as well as a series of physiological events such as nutrient uptake and immune function to improve productivity. Research on intestinal organoids has recently garnered interest, aiming to study various functions of the intestinal epithelium as a potential alternative to an in vivo system. These technologies have created new possibilities and opportunities for substituting animals for testing with an in vitro model. Methods: Here, we report the establishment and characterisation of intestinal organoids derived from jejunum tissues of adult pigs. Intestinal crypts, including intestinal stem cells from the jejunum tissue of adult pigs (10 months old), were sequentially isolated and cultivated over several passages without losing their proliferation and differentiation using the scaffold-based and three-dimensional method, which indicated the recapitulating capacity. Results: Porcine jejunum-derived intestinal organoids showed the specific expression of several genes related to intestinal stem cells and the epithelium. Furthermore, they showed high permeability when exposed to FITC-dextran 4 kDa, representing a barrier function similar to that of in vivo tissues. Collectively, these results demonstrate the efficient cultivation and characteristics of porcine jejunum-derived intestinal organoids. Conclusions: In this study, using a 3D culture system, we successfully established porcine jejunum-derived intestinal organoids. They show potential for various applications, such as for nutrient absorption as an in vitro model of the intestinal epithelium fused with organ-on-a-chip technology to improve productivity in animal biotechnology in future studies.