• 제목/요약/키워드: Intestinal Microbial Populations

검색결과 14건 처리시간 0.02초

Influence of Dietary Oligosaccharides on Growth Performance and Intestinal Microbial Populations of Piglets

  • Shi, Bao-ming;Shan, An-shan;Tong, Jian-ming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권12호
    • /
    • pp.1747-1751
    • /
    • 2001
  • An experiment was conducted to determine the effects of dietary oligosaccharides on performance and intestinal microbial populations of piglets. Ten litters of piglets were assigned to five groups randomly, with two litters per group. The control group was fed with corn-soybean basal diet. Oligosaccharides was added to the basal diet at the level of 0.05%, 0.1%, 0.2% and 0.35% respectively to form four experimental diets. The experiment was conducted with two periods. The first period (suckling period) was from 7 to 28 days of age and the second period (weanling period) was from 28 to 56 days of age. Fresh fecal samples were collected at 21 days of age and assayed for Escherichia coli concentration, pH and moisture content. Three pigs per group were slaughtered at 42 days of age and cecum, colon, and rectum content samples were collected and assayed immediately for Escherichia coli and Bifidobacterium concentration, pH and moisture content. The results showed that dietary oligosacchrides decreased fecal Escherichia coli population and pH significantly (p 0.05), but did not affect performance and fecal moisture content during suckling period. 0.1% oligosaccharides for weanling pigs increased growth and improved feed conversion ratio together with a reduction of diarrhea (p 0.05), but 0.35% oligosaccharides did not affect growth performance. 0.1% and 0.2% oligosaccharides for weanling pigs had a suppression to Escherichia coli colonization in rectum and an enrichment to Bifidobacterium in colon (p 0.05). Oligosaccharides decreased significantly (p<0.05) rectum moisture content, but did not affect cecum, colon and rectum pH.

Physiological understanding of host-microbial pathogen interactions in the gut

  • Lee, Sei-Jung;Choi, Sang Ho;Han, Ho Jae
    • 대한수의학회지
    • /
    • 제56권2호
    • /
    • pp.57-66
    • /
    • 2016
  • The gut epithelial barrier, which is composed of the mucosal layer and the intestinal epithelium, has multiple defense mechanisms and interconnected regulatory mechanisms against enteric microbial pathogens. However, many bacterial pathogens have highly evolved infectious stratagems that manipulate mucin production, epithelial cell-cell junctions, cell death, and cell turnover to promote their replication and pathogenicity in the gut epithelial barrier. In this review, we focus on current knowledge about how bacterial pathogens regulate mucin levels to circumvent the epithelial mucus barrier and target cell-cell junctions to invade deeper tissues and increase their colonization. We also describe how bacterial pathogens manipulate various modes of epithelial cell death to facilitate bacterial dissemination and virulence effects. Finally, we discuss recent investigating how bacterial pathogens regulate epithelial cell turnover and intestinal stem cell populations to modulate intestinal epithelium homeostasis.

Effects of probiotic supplement (Bacillus subtilis and Lactobacillus acidophilus) on feed efficiency, growth performance, and microbial population of weaning rabbits

  • Phuoc, Thanh Lam;Jamikorn, Uttra
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권2호
    • /
    • pp.198-205
    • /
    • 2017
  • Objective: This study aimed to investigate the effects of single or/and double strains of probiotic supplement on feed efficiency, growth performance, and microbial population in distal gastrointestinal tract (GIT) of weaning rabbits. Methods: Sixty-four weaning (28 days old) New Zealand White rabbits were randomly distributed into four groups with treatments including: basal diet without probiotic supplement (control) or supplemented as follows: $1{\times}10^6cfu/g$ B. subtilis (BS group), $1{\times}10^7cfu/g$ L. acidophilus (LA group), or $0.5{\times}10^6cfu/g$ B. subtilis plus $0.5{\times}10^7cfu/g$ L. acidophilus (BL group). During the research, the male and female rabbits were fed separately. Body weight of the rabbits was recorded at 28, 42, and 70 d of age. Results: There was an increase (p<0.05) in body weight gain for the LA group at 42 d. Rabbits fed BL responsed with a greater growth (p<0.05) and better feed conversion ratio (p<0.05) than those fed with no probiotic. Digestibility coefficients of dry matter, organic matter, crude protein, neutral detergent fiber, and gross energy were higher (p<0.05) in LA and BL groups than those in the control group. Male rabbits had higher (p<0.05) Bacilli spp. and Coliformis spp. in the ileum than female rabbits. Rabbits supplemented with BS had greater (p<0.05) numbers of bacilli in all intestinal segments than those receiving no probiotic, whereas intestinal Lactobacilli populations were greater (p<0.001) in the LA and BL diets compared to control. Average intestinal coliform populations were lowest (p<0.05) in the rabbits supplemented with LA as compared to those fed the control and BS. Conclusion: Supplementation of L. acidophilus alone or in combination with B. subtilis at a half of dose could enhance number of gut beneficial bacteria populations, nutrient digestibility, cecal fermentation, feed efficiency, and growth performance, but rabbits receiving only B. subtilis alone were not different from the controls without probiotic.

Improvement of Inflammation, Diabetes, and Obesity by Forest Product-Derived Polysaccharides through the Human Intestinal Microbiota

  • Seong-woo MYEONG;Yong Ju LEE;Do Hyun KIM;Tae-Jong KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권5호
    • /
    • pp.358-380
    • /
    • 2023
  • The intestinal microbiota plays a crucial role in determining human health, rendering it a major focus of scientific investigation. Rather than eliminating all microbes, promoting the proliferation of beneficial microorganisms within the gut has been recognized as a more effective approach to improving health. Unfavorable conditions potentially alter gut microbial populations, including a reduction in microbial diversity. However, intentionally enhancing the abundance of beneficial gut microbes can restore a state of optimal health. Polysaccharides are widely acknowledged for their potential to improve the gut microbiota. This review emphasizes the findings of recent studies examining the effects of forest product-derived polysaccharides on enhancing the gut microbiota and alleviating inflammation, diabetes symptoms, and obesity. The findings of several studies reviewed in this paper strongly suggest that forest products serve as an excellent dietary source for improving the gut microbiota and potentially offer valuable dietary interventions for chronic health problems, such as inflammation, diabetes, and obesity.

Effects of Soybean Small Peptides on Rumen Fermentation and on Intestinal and Total Tract Digestion of Luxi Yellow Cattle

  • Wang, W.J.;Yang, W.R.;Wang, Y.;Song, E.L.;Liu, X.M.;Wan, F.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권1호
    • /
    • pp.72-81
    • /
    • 2013
  • Four Luxi beef cattle ($400{\pm}10$ kg) fitted with ruminal, duodenal and ileal cannulas were used in a $4{\times}4$ Latin square to assess the effects of soybean small peptide (SSP) infusion on rumen fermentation, diet digestion and flow of nutrient in the gastrointestinal tract. The ruminal infusion of SSP was 0 (control), 100, 200 and 300 g/d. Ruminal SSP infusion linearly (p<0.01) and quadratically (p<0.01) increased microbial protein synthesis and rumen ammonia-N concentration. Concentrations of total volatile fatty acid were linearly increased (p = 0.029) by infusion SSP. Rumen samples were obtained for analysis of microbial ecology by real-time PCR. Populations of rumen Butyrivibrio fibrisolvens, Streptococcus bovis, Ciliate protozoa, Ruminococcus flavefaciens, and Prevotella ruminicola were expressed as a proportion of total Rumen bacterial 16S ribosomal deoxyribonucleic acid (rDNA). Butyrivibrio fibrisolvens populations which related to total bacterial 16S rDNA were increased (p<0.05), while Streptococcus bovis populations were linearly (p = 0.049) and quadratically (p = 0.020) decreased by infusion of SSP. Apparent rumen digestibility of DM and NDF were (Q, p<0.05; L, p<0.05) increased with infusion SSP. Total tract digestion of DM, OM and NDF were linearly (p<0.01) and quadratically (p<0.01) increased by infusing SSP. The flow of total amino acids (AA), essential amino acids (EAA) and individual amino acids were linearly (p<0.01) and quadratically (p<0.01) increased with infusion SSP. The digestibility of Lysine was quadratically (p = 0.033) increased and apparent degradability of Arginine was linearly (p = 0.032) and quadratically (p = 0.042) increased with infusion SSP. The results indicated that infusion SSP could improve nutrient digestion, ruminal fermentation and AA availability.

PCR-DGGE를 통해 분석한 항암치료에 따른 장내 미생물 변화 (A PCR Denaturing Gradient Gel Electrophoresis (DGGE) Analysis of Intestinal Microbiota in Gastric Cancer Patients Taking Anticancer Agents)

  • 유선녕;안순철
    • 생명과학회지
    • /
    • 제27권11호
    • /
    • pp.1290-1298
    • /
    • 2017
  • 인체의 장내에 존재하는 장내 미생물은 서로 공생 또는 길항 관계를 유지하며 우리 몸의 면역 방어 기전에 중요한 요소로 작용한다. 본 연구는 항암제가 위암 환자의 장내 미생물 생태계에 미치는 영향을 조사 하였다. 항암치료를 받는 환자의 분변에서 genomic DNA를 추출하고, 16S rDNA 유전자에 대한 denaturing gradient gel electrophoresis (DGGE)를 수행하였다. 분석된 균주는 개체간의 차이가 있었으나, 대부분 사람의 장내에 살고 있는 normal flora로 동정되었다. 모든 분변에 존재하는 5 개 밴드의 서열 분석 결과에 의하면 Faecalibacterium prausnitzii, Morganella morganii 및 Uncultured bacterium sp.가 나타났고, 항암제 처리 후 Sphingomonas paucimobilis, Lactobacillus gasseri, Parabacteroides distasonis 및 Enterobacter sp.가 증가하였다. 이 연구에서 probiotic으로 알려진 Bifidobacterium과 Lactobacillus를 특이적 PCR primer를 이용하여 동정한 결과, 항암제 투여로 인해 Bifidobacterium과 Lactobacillus의 개체군이 현저하게 줄어들어 diarrhea와 같은 부작용의 원인을 예상하게 하며, 장내 생태계의 주요 박테리아 집단에도 중요한 영향을 미치는 것을 알 수 있었다. 이러한 결과는 항암제 투여와 같이 시간의 흐름에 따른 균총의 변화를 시각적으로 모니터링하기 위하여 PCR-DGGE 분석법이 유용하다는 것을 나타낸다.

Effects of dietary supplementation with Pediococcus acidilactici ZPA017 on reproductive performance, fecal microbial flora and serum indices in sows during late gestation and lactation

  • Liu, Hui;Wang, Sixin;Zhang, Dongyan;Wang, Jing;Zhang, Wei;Wang, Yamin;Ji, Haifeng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권1호
    • /
    • pp.120-126
    • /
    • 2020
  • Objective: This study was conducted to determine the effects of dietary supplementation with Pediococcus acidilactici (P. acidilactici) ZPA017 as a probiotic on reproductive performance, fecal microbial flora and serum indices in sows during late gestation and lactation. Methods: A total of 94 sows (Large White×Yorkshire, average 4.50 parities) were randomly allotted to two dietary treatments: control diet and the diet supplemented with P. acidilactici ZPA017 (2.40×109 colony-forming unit/kg of diets). The study started at d 90 of gestation and conducted until d 28 of lactation. Results: Compared to sows fed the control diet, supplementation of P. acidilactici ZPA017 increased the number of weaning piglets, weaning weight of litter and piglets, survival rate of piglets at weaning (p<0.05), and decreased diarrhea rate of piglets in lactation (p<0.05). Dietary P. acidilactici ZPA017 increased fecal Lactobacillus populations (p = 0.030) and reduced fecal Escherichia coli and Staphylococcus aureus populations (p<0.05) of sows at weaning. Moreover, the supplementation of P. acidilactici ZPA017 increased serum concentrations of immunoglobulin G, immunoglobulin A and total protein (p<0.05), while decreased serum haptoglobin concentration and alanine aminotransferase activity (p<0.05) of sows at weaning. Conclusion: Administration of P. acidilactici ZPA017 in diets during late gestation and lactation had positive effects on the reproductive performance, intestinal microflora balance and immunity of sows.

신생아 장내 미생물의 형성과 이의 분석을 위한 분자 생태학적 기술 (Development of Intestinal Microorganisms and Molecular Ecological Methods for Analysis of Intestinal Ecosystem in the Neonate)

  • 박자령;배진우;이성근;남영도;오종원;박용하
    • 한국미생물·생명공학회지
    • /
    • 제33권3호
    • /
    • pp.159-168
    • /
    • 2005
  • 인간의 장(腸)은 태어날 때만 해도 무균 상태이지만 태어나면서 산모나 주위 환경에 의해 미생물이 형성되기 시작한다. 미생물은 숙주 안에서 면역, 영양학적, 생리학적, 보호과정 등의 특징을 유발시키며, 밀접한 상호작용을 한다[6,24, 35]. 많은 연구를 통해 장내 미생물이 우리에게 주는 이로운 점들이 밝혀 지긴 했지만, 우리가 목표로 하는 장내 미생물이 숙주의 장내, 건강 상태를 조절하는 메커니즘은 아직 뚜렷하게 밝혀 지지 않고 있다. 즉, 숙주(인간)의 건강의 상태를 결정지어 주는 장내미생물 biomarker의 확립이 아직 불분명한 상태이다. 장내미생물의 방대한 다양성으로 인하여, 이를 연구하기 위한 분자 생태학 기술의 올바른 접목과 더 나은 방향으로의 기술 발전이 필요하다. 앞으로 더 나은 기술 개발을 통해, 신생아 장내의 초기에 형성되는 미생물을 검출하고, 여러 외부 요인에 따라 어떻게 연속되어 가면서 어떠한 역할을 하는지를 밝힐 수 있다면, 질병 치료뿐 아니라 예방도 가능해 질 것이다.

Effect of Bacillus amyloliquefaciens-based Direct-fed Microbial on Performance, Nutrient Utilization, Intestinal Morphology and Cecal Microflora in Broiler Chickens

  • Lei, Xinjian;Piao, Xiangshu;Ru, Yingjun;Zhang, Hongyu;Peron, Alexandre;Zhang, Huifang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권2호
    • /
    • pp.239-246
    • /
    • 2015
  • The present study was conducted to evaluate the effect of the dietary supplementation of Bacillus amyloliquefaciens-based direct-fed microbial (DFM) on growth performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. A total of two hundred and eighty eight 1-d-old Arbor Acres male broilers were randomly allocated to one of four experimental treatments in a completely randomized design. Each treatment was fed to eight replicate cages, with nine birds per cage. Dietary treatments were composed of an antibiotic-free basal diet (control), and the basal diet supplemented with either 15 mg/kg of virginiamycin as antibiotic growth promoter (AGP), 30 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 30) or 60 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 60). Experimental diets were fed in two phases: starter (d 1 to 21) and finisher (d 22 to 42). Growth performance, nutrient utilization, morphological parameters of the small intestine and cecal microbial populations were measured at the end of the starter (d 21) and finisher (d 42) phases. During the starter phase, DFM and virginiamycin supplementation improved the feed conversion ratio (FCR; p<0.01) compared with the control group. For the finisher phase and the overall experiment (d 1 to 42) broilers fed diets with the DFM had better body weight gain (BWG) and FCR than that of control (p<0.05). Supplementation of virginiamycin and DFM significantly increased the total tract apparent digestibility of crude protein (CP), dry matter (DM) and gross energy during both starter and finisher phases (p<0.05) compared with the control group. On d 21, villus height, crypt depth and villus height to crypt depth ratio of duodenum, jejunum, and ileum were significantly increased for the birds fed with the DFM diets as compared with the control group (p<0.05). The DFM 30, DFM 60, and AGP groups decreased the Escherichia coli population in cecum at d 21 and d 42 compared with control group (p<0.01). In addition, the population of Lactobacillus was increased in DFM 30 and DFM 60 groups as compared with control and AGP groups (p<0.01). It can be concluded that Bacillus amyloliquefaciens-based DFM could be an alternative to the use of AGPs in broilers diets based on plant protein.

Effects of Organic Acids on Growth Performance, Gastrointestinal pH, Intestinal Microbial Populations and Immune Responses of Weaned Pigs

  • Li, Zheji;Yi, Ganfeng;Yin, Jingdong;Sun, Peng;Li, Defa;Knight, Chris
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권2호
    • /
    • pp.252-261
    • /
    • 2008
  • Two experiments were conducted to compare the effects of feeding organic acids and antibiotic growth promoters in weaned pigs. In Exp. 1, 96 nursery pigs (Large White$\times$Landrace; initial weight $7.80{\pm}0.07kg$) were randomly allotted into one of four dietary treatments. Pigs in treatment 1 were fed a complex starter diet. Treatments 2 to 4 were the same as treatment 1 but supplemented with antibiotics (200 ppm chlortetracycline plus 60 ppm Lincospectin), 0.5% potassium diformate or 0.5% dry organic acid blend ACTIVATE Starter DA (ASD). During the 4-week post-weaning period, pigs fed ASD or antibiotics had better gain (p = 0.03) and feed efficiency (p = 0.04) than pigs fed the control diet. On d 14 post-weaning, pigs fed the control diet had the lowest fecal lactobacilli count among all dietary treatments (p = 0.02), whereas pigs fed ASD or antibiotics had a trend for lower fecal E. coli count compared to the control pigs (p = 0.08). Serum insulin-like growth factor-1 (IGF-1) of pigs fed ASD did not differ from pigs fed the control diet (p>0.05) at d 14 after weaning. In Exp. 2, 24 weaned pigs (Large White$\times$Long White; initial weight $5.94{\pm}0.33kg$) were allotted into four groups and housed individually. Pigs were fed a control diet or diets supplemented with antibiotics (100 ppm colistin sulfate, 50 ppm Kitasamycin plus 60 ppm Olaquindox), 0.5% or 1% ASD. All pigs were orally challenged with E. coli $K88^+$ on d 5. During d 5 to 14 after challenge, pigs fed antibiotics, 0.5% or 1% ASD had better gain (p = 0.01) and feed efficiency (p = 0.03) than pigs fed the control diet. On d 14, compared to the control pigs, pigs fed 0.5% ASD had higher lactobacilli in the duodenum and pigs fed 1% ASD and antibiotics had a trend for higher lactobacilli in the ileum (p = 0.08). Pigs fed antibiotics, 0.5% or 1% ASD diets tended to have decreased ileal E. coli count compared to those fed the control diet (p = 0.08). Serum interleukin-6 and cortisol and digesta pH values were not affected by treatment or time. These results indicate that feeding ASD can improve the growth performance of weaning pigs, mainly via modulating intestinal microflora populations without affecting gastrointestinal pH or immune indices.