Browse > Article

Development of Intestinal Microorganisms and Molecular Ecological Methods for Analysis of Intestinal Ecosystem in the Neonate  

Park Ja Ryeong (Biological Resources Center, Korea Research Institute of Bioscience and Biotechology(KRIBB), Department of Biotechnology, Yonsei University)
Bae Jin-Woo (Biological Resources Center, Korea Research Institute of Bioscience and Biotechology(KRIBB))
Rhee Sung-Keun (Department of Microbiology, Chungbuk National University)
Nam Young-Do (Biological Resources Center, Korea Research Institute of Bioscience and Biotechology(KRIBB))
Oh Jong-Won (Department of Biotechnology, Yonsei University)
Park Yong-Ha (Biological Resources Center, Korea Research Institute of Bioscience and Biotechology(KRIBB))
Publication Information
Microbiology and Biotechnology Letters / v.33, no.3, 2005 , pp. 159-168 More about this Journal
Abstract
Up to date, a number of review papers were reported on intestinal microorganisms that influence the health and disease of human being and diet that directly influence the establishment of intestinal microbial populations. Importance of studying intestinal microorganisms in the neonate arises from the easy approach to studying initial acquisition and settlement of intestinal microorganisms. Despite of the importance, few studies of neonatal intestinal microorganisms have been carried out and there is no paper focusing the factors to influence the development of intestinal microorganisms and molecular ecological methods for the analysis of intestinal ecosystem in the neonate. In this review, we summarized the status of our current knowledge of basic initial acquisition and settlement of intestinal microorganisms. And recent development of molecular ecological methods in studying the intestinal microbiology was also discussed.
Keywords
Intestinal microorganism; molecular ecological methods; probiotics & prebiotics;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Matto. J., E. Malinen., M.-L. Suihko, M. Alander, A. Paiva, and M. Saarela. 2004. Genetic heterogeneity and functional properties of intestinal Bifidobacteria. J. Appl. Microbiol. 97: 459-470   DOI   ScienceOn
2 Torun, M. M., H. Bahar, E. GUr, Y. Tatan, M. Alikaifolu, and A. Arvas. 2002. Anaerobic fecal tlora in healthy beast-fed Turkish babies born by different methods. Anaerobe 8: 63-67   DOI   ScienceOn
3 Niewold, T. A., H. H. Kerstens, J. van der Meulen, M. A. Smits, and M. M. Hulst. 2005. Development of a porcine small intestinal cDNA micro-array: characterization and functional analysis of the response to enterotoxigenic E. coli. Vet. Immunol. Immunopathol. 105: 317-329   DOI   ScienceOn
4 Mackie, R. I., S. Alune, and H. R. Gaskins. 1999. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69: 1035S-1045S   DOI   PUBMED
5 Sprunt, K. and G. Leidy. 1988. The use of bacterial interference to prevent infection. Can. J. Microbiol. 34: 332-338   DOI   PUBMED   ScienceOn
6 Matsuki, T., K.Watanabe, J. Fujimoto, Y. Miyamoto, T. Takada, K. Matsumoto, H. Oyaizu, and R. Tanaka. 2002. Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl. Environ. Microbiol. 68: 5445-5451   DOI   ScienceOn
7 Bennet, R., M. Eriksson, C. E. Nord, and R. Zetterstrom 1982. Suppression of aerobic and anaerobic faecal flora in newborns receiving parenteral gentamicin and ampicillin. Acta Paediatr Scand. 71: 559-562   DOI
8 Chizhikov, V., A. Rasooly, K. Chumakov, and D. D. Levy. 2001. Microarray analysis of microbial virulence factors. Appl. Environ. Microbiol. 67: 3258-3263   DOI   ScienceOn
9 Favier, C. F., W. M. de Vos., and A. D. Akkermans 2003. Development of bacterial and bifidobacterial communities in feces of newborn babies. Anaerobe 9: 219-229   DOI   ScienceOn
10 Holzapfel, W H., P. Haberer, J. Snel, U. Schillinger, and Huis in't Veld. 1998. Overview of gut flora and probiotics. Int. J. Food Microbiol. 41: 85-101   DOI   ScienceOn
11 Lundequist, B., C. E. Nord, and J. Winberg. 1985. The composition of the faecal microflora in breastfed and bottle fed infants from birth to eight weeks. Acta Paediatr Scand. 74: 45-51   DOI
12 Sakata, S., T. Tonooka, S. lshizeki, M, Takada, M. Sakamoto, M. Fukuyama, and Y. Benno. 2005. Culture-independent analysis of fecal microbiota in infants, with special reference to Bifidobacterium species. FEMS Microbiol. Lett. 243: 417-423   DOI   ScienceOn
13 Bullen, C. L., P. V. Tearle, and M. G Stewart. 1977. The effect of 'hurnanised' milks and supplemented breast feeding on the faecal flora of infants. J. Med. Microbiol. 10: 403-413   DOI   PUBMED
14 X. W. Huijsdens, R. K. Linskens, J. Koppes, Y. L. Tang, S. G. Meuwissen, C. M. Vandenbroucke-Grauls, and P. H. Savelkoul. 2004. Detection of Helicobacter species DNA by quantitative PCR in the gastrointestinal tract of healthy individuals and of patients with inflammatory bowel disease. FEMS Immunol. Med. Microbiol. 41: 79-84   DOI   ScienceOn
15 Eckburg, P. B., E. M. Bike, C. N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S. R. Gill, K. E. Nelson, D. A. Reiman. 2005. Diversity of the human intestinal microbial tlora. Science 308(5728): 1635-1638   DOI   PUBMED   ScienceOn
16 Reid, G., J. Jass, M. T. Sebulsky, and J. K. McCormick. 2003. Potential uses of probiotics in clinical practice. Clin. Microbiol. Rev. 16: 658-672   DOI   ScienceOn
17 Bartosch, S., A. Fite, G. T. Macfarlane, and M. E. McMurdo. 2004. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Environ. Microbiol. 70: 3575-3581   DOI   ScienceOn
18 Zoetendal, E. G, K. Ben-Amor, H. J. Harmsen, F. Schut, A. D. Akkermans, and W. M. de Vos. 2002. Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rRNA-targeted probes. Appl. Environ. Microbiol. 68: 4225-4232   DOI   ScienceOn
19 Harmsen, H. J., A. C. M. Wildeboer-Veloo, J. Grijpstra, J. Knol, J. E. Degener, and G. W. Welling. 2000. Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl. Environ. Microbiol. 66: 4523-4527   DOI   ScienceOn
20 Namsolleck, P., R. Thiel, P. A. Lawson, K. Holmstrom, M. Rajilic, E. E. Vaughan, L. Rigottier-Gois, M. D. Collins, W. M. de Vos, and M. Blaut. 2004. Molecular methods for the analysis of gut microbiota. Microb. Ecol. Health Dis. 16: 71-85   DOI   ScienceOn
21 Wang, R. F., M. L. Beggs, B. D. Erickson, and C. E. Cemiglia. 2004. DNA microarray analysis of predominant human intestinal bacteria in fecal samples. Mol. Cell Probes 18: 223-234   DOI   ScienceOn
22 Wang, R. F., S. J. Kim, L. H. Robertson, and C. E. Cemiglia. 2002. Development of a membrane-array method for the detection of human intestinal bacteria in fecal samples. Mol. Cell Probes 16: 341-350   DOI   ScienceOn
23 Mackie, R. I., S. Alune, and H. R. Gaskins. 1999. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69: 1035S-1045S   DOI   PUBMED
24 Kunz, C., S. Rudloff, W. Baier, N. Klein, and S. Strobel. 2000. Oligosaccharides in human milk: structural, functional and metabolic aspects. Annu. Rev. Nutr. 20: 699-722   DOI   ScienceOn
25 Roc'o Mart'na, S. L., M. A. Carlota Reviriegoa, E. Jime' neza, M. N. O. L. Mar' na, J. S. J. N. Julio Bozab, L. Ferna' ndeza, J. X. A. Juan, and M. Rodr'gueza. 2004. The commensal microtlora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci. Technol. 15: 121-127   DOI   ScienceOn
26 Bezirtzoglou, E. 1997. The intestinal microflora during the first weeks of life. Anaerobe 3: 173-177   DOI   ScienceOn
27 Hingoh, Y, M. Ohkuma, and T. Kudo. 2003. Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidate). FEMS Microbiol Ecol. 44: 231-242   DOI   ScienceOn
28 Haarman, M., and J. Knol. 2005. Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula. Appl. Environ. Microbiol. 71: 2318-2324   DOI   ScienceOn
29 Brigidi, P., B. Vitali, E. Swennen, G. Bazzocchi, and D. Matteuzzi. 2001. Effects of probiotic administration upon the composition and enzymatic activity of human fecal microbiota in patients with irritable bowel syndrome or functional diarrhea. Res. Microbial. 152: 735-741   DOI   ScienceOn
30 Lay, C., M. Sutren, V. Rochet, K. Saunier, J. Dore, and L. Rigottier-Gois. 2005. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ. Microbiol. 7: 933-946   DOI   ScienceOn
31 Heilig, H. G., E. G. Zoetendal, E. E. Vaughan, P. Marteau, A. D. Akkermans, and W. M. de Vos. 2002. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl. Environ. Microbiol. 68: 114-123   DOI   ScienceOn
32 Berg, R. 1996. The indigenous gastrointestinal microflora. Trends Microbiol. 4: 430-435   DOI   PUBMED   ScienceOn
33 MacGregor, R. R. 3rd, and W.W. Jr. Tunnessen. 1973. The incidence of pathogenic organisms in the normal flora of the neonate's external ear and nasopharynx. Clin. Pediatr. (Phila) 12: 697-700   DOI   ScienceOn
34 Yoshioka, H., K. Iseki, and K. Fujita. 1983. Development and differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatrics 72: 317-321   PUBMED
35 Franks, A. H., H. J. Harmsen, G. C. Raangs, G. J. Jansen, F. Schut, and G. W Welling. 1998. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 64: 3336-3345   PUBMED
36 Muyzer, G., E. C. de Waal, and A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700   PUBMED
37 Wang, R. F., M. L. Beggs, L. H. Robertson, and C. E. Cerniglia. 2002. Design and evaluation of oligonucleotidemicroarray method for the detection of human intestinal bacteria in fecal samples. FEMS Microbiol. Lett. 213: 175-182   DOI   ScienceOn
38 Ludwig, W., S. Dorn, N. Springer, G. Kirchhof, and K.H. Schleifer. 1994. PCR-based preparation of 23S rRNAtargeted group-specific polynucleotide probes. Appl. Environ. Microbiol. 60: 3236-3244   PUBMED
39 Favier, C. F., E. E. Vaughan, W. M. de Vos, and A. D. Akkermans 2002. Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol. 68: 219-226   DOI   ScienceOn
40 Reiman, D. A and S. Falkow. 2001. The meaning and impact of the human genome sequence for microbiology. Trends Microbiol. 9: 206-208   DOI   ScienceOn
41 Zoetendal, E. G, A. D. Akkermans, and W. M. De Vos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64: 3854-3859   PUBMED
42 Tannock, G. W. 1997. Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R&D. Trends Biotechnol. 15: 270-274   DOI   PUBMED   ScienceOn
43 Rigottier-Gois, L., V. Rochet, N. Garrec, A Suau, and J. Dore. 2003. Enumeration of Bacteroides species in human faeces by tluorescent in situ hybridisation combined with tlow cytometry using 16S rRNA probes. Syst. Appl. Microbiol. 26: 110-118   DOI   ScienceOn
44 Meance, S., C. Cayuela, A. Raimondi, P. Turchet, C. Lucas, and J. M. Antoine. 2003. Recent advances in the use of functional foods: effects of the commercial fermented milk with Bifidobacterium animalis strain DN-173 010 and yoghurt strains on gut transit time in the elderly. Microb. Ecol. Health Dis. 15: 15-22   DOI   ScienceOn
45 Tannock, G. W., R. Fuller, S. L. Smith, and M. A. Hall. 1990. Plasmid profiling of members of the family Enterobacteriaceae, Lactobacilli, and Bifidobacteria to study the transmission of bacteria from mother to infant. J. Clin. Microbiol. 284: 1225-1228
46 Weisburg, W. G, S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703   DOI   PUBMED
47 Amann, R. I., W. Ludwig. and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169   PUBMED
48 Simhon, A., J. R. Douglas, B. S. Drasar, and J. F. Soothill. 1982. Effect of feeding on infant's faecal flora. Arch. Disease in Childhood 57: 54-58
49 Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919-1925   PUBMED
50 Benno, Y., K. Sawada, and T. Mitsuoka. 1984. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol. Immunol. 28: 975-986   DOI   PUBMED
51 Wu, L., D. K. Thompson, G Li, R. A. Hurt, J. M. Tiedje, and J. Zhou. 2001. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol. 67: 5780-5790   DOI   ScienceOn
52 Harmsen, H. J., G. C. Raangs, A. H. Franks, A. C. M. Wildeboer-Veloo, and G. W. Welling. 2002. The Effect of the Probiotic Inulin and the Probiotic Bifidobacterium longum on the Fecal Microflora of Healthy Volunteers Measured by FISH and DGGE. Microb. Ecol. Health Dis. 14: 211-219
53 Songjinda, P., J. Nakayama, Y. Kuroki, S. Tanaka, S. Fukuda, C. Kiyohara, T. Yamamoto, K. lzuchi, T. Shirakawa, and K. Sonomoto. 2005. Molecular monitoring ofthe developmental bacterial community in the gastrointestinal tract of Japanese infants. Biosci. Biotechnol. Biochem. 69: 638-641   DOI   ScienceOn