• Title/Summary/Keyword: Intestinal Growth

Search Result 594, Processing Time 0.02 seconds

Profile of HER2 +ve Gastric Cancers in Brunei Darussalam

  • Chong, Vui Heng;Telisinghe, Pemasari Upali;Tan, Jackson;Abdullah, Muhamad Syafiq;Chong, Chee Fui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2555-2558
    • /
    • 2016
  • Background: Gastric cancer is the second most common gastrointestinal cancer and is still associated with significant morbidity and mortality due to late presentation and diagnosis at advanced stages. Studies have reported that a variable proportion of gastric cancer is positive for the human epidermal growth factor receptor 2 (HER2) and patients with HER2 positive (HER2 +ve) lesions can benefit from targeted therapy. This study was conducted to assess the prevalence of HER2 +ve gastric cancers in Brunei Darussalam, a developing Southeast Asian nation. Materials and Methods: Patients were identified from the Department of Pathology registry and retrospectively reviewed. HER2 expression was assessed by immunohistochemistry and only those staining 3+were considered positive. Results: Our study included 103 cases (66 males and 37 females) with a mean age of $65.1{\pm}14.8$ years old. There were 14 cases positive for HER2 (10 males and 4 females) giving a prevalence of 13.6%. The HER2 +ve cases were significantly older ($70.6{\pm}19.3$ years old) than the negative cases ($64.2{\pm}13.8$, p=0.041) and had significantly more advanced disease (stages 3 and 4, p=0.026). There were no significant differences in gender distribution, presence of intestinal metaplasia, EBV status, Helicobacter pylori status, tumor location (proximal vs. distal) and degree of tumor differentiation (all p values >0.05). Conclusions: Our study showed that 13.6% of our gastric cancers are positive for HER2, the affected patients being older and having more advanced disease at diagnosis.

The Digestibility of Organic Trace Minerals along the Small Intestine in Broiler Chickens

  • Bao, Y.M.;Choct, M.;Iji, P.A.;Bruerton, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.1
    • /
    • pp.90-97
    • /
    • 2010
  • An experiment was conducted to evaluate the effects of low concentrations of organic and inorganic dietary trace minerals on broiler performance and trace mineral digestibility along the small intestine of 35-day-old broiler chickens reared under floor-pen conditions. Eight hundred male, day-old Cobb broiler chickens were randomly allocated to 4 dietary treatments (25 birds per pen with 8 replicates per treatment). Broilers fed diets supplemented with 4, 20, 40 and 30 mg/kg, respectively, of Cu, Fe, Mn and Zn from organic chelates and inorganic salts achieved the same body weight gain as those supplemented at the NRC levels (8 mg Cu, 40 mg Fe, 60 mg Mn and 40 mg Zn/kg, respectively) from inorganic salts. However, birds fed a control diet without any supplementation at dietary levels of 7.4-8.8, 60.1-69.2, 14.6-15.4 and 19.1-20.6 mg/kg of Cu, Fe, Mn and Zn, respectively, had decreased feed intake and growth rate. There was no significant difference in the digestibility of Cu in all regions of the small intestine. Throughout the small intestine the apparent absorption of Mn from both organic and inorganic sources was small, whereas the digestibility of Zn seemed to be more complex, exhibiting differences in the apparent absorption due to both mineral source and intestinal site. Therefore, the digestibility of organic Zn was improved (p<0.01) in the ileum compared to inorganic Zn. The digestibility of Zn in the duodenum was smaller (p<0.05) than that in the ileum.

Chemical Properties and Assessment of Immunomodulatory Activities of Extracts isolated from Broccoli (브로콜리로부터 분리한 추출물의 In vitro 면역증진 활성평가 및 화학적 특성)

  • Kwak, Bong-Shin;Park, Hye-Ryung;Lee, Sue Jung;Choi, Hyuk-Joon;Shin, Kwang-Soon
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1140-1148
    • /
    • 2017
  • For the purpose of developing new immunomodulatory agents from broccoli, ethanol extract (BCEE), hot water extract (BCHW), and crude polysaccharide (BCCP) were isolated from broccoli, and their immunomodulatory activities and chemical properties were examined. In the in vitro cytotoxicity analysis, BCHW and BCCP did not affect the growth of tumor cells and normal cells. Murine peritoneal macrophages stimulated with BCCP showed higher production of IL-6, IL-12, and $TNF-{\alpha}$ cytokines than those stimulated with BCHW. Also, BCHW and BCCP did not show proliferation of splenic lymphocytes. In the in vitro assay for intestinal immunomodulatory activities, only BCCP enhanced GM-CSF secretion and the bone marrow cell-proliferating activity via cells in Peyer's patches at $1,000{\mu}g/mL$. Also, BCHW mainly contained 33.7% neutral sugars, such as arabinose, glucose, and galactose, and 30.7% uronic acid, and BCCP consisted of 42.6% neutral sugars, including arabinose, galactose, and glucose, and 50.5% uronic acid. The above results lead us to conclude that crude polysaccharide (BCCP) isolated from broccoli causes considerably high cytokine production in peritoneal macrophages and bone marrow cell proliferation, and the polysaccharide extraction process is indispensable for separation of new immunomodulatory agents from broccoli.

Longevity and Stress Resistant Property of 6-Gingerol from Zingiber officinale Roscoe in Caenorhabditis elegans

  • Lee, Eun Byeol;Kim, Jun Hyeong;An, Chang Wan;Kim, Yeong Jee;Noh, Yun Jeong;Kim, Su Jin;Kim, Ju-Eun;Shrestha, Abinash Chandra;Ham, Ha-Neul;Leem, Jae-Yoon;Jo, Hyung-Kwon;Kim, Dae-Sung;Moon, Kwang Hyun;Lee, Jeong Ho;Jeong, Kyung Ok;Kim, Dae Keun
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.568-575
    • /
    • 2018
  • In order to discover lifespan-extending compounds made from natural resources, activity-guided fractionation of Zingiber officinale Roscoe (Zingiberaceae) ethanol extract was performed using the Caenorhabditis elegans (C. elegans) model system. The compound 6-gingerol was isolated from the most active ethyl acetate soluble fraction, and showed potent longevity-promoting activity. It also elevated the survival rate of worms against stressful environment including thermal, osmotic, and oxidative conditions. Additionally, 6-gingerol elevated the antioxidant enzyme activities of C. elegans, and showed a dose-depend reduction of intracellular reactive oxygen species (ROS) accumulation in worms. Further studies demonstrated that the increased stress tolerance of 6-gingerol-mediated worms could result from the promotion of stress resistance proteins such as heat shock protein (HSP-16.2) and superoxide dismutase (SOD-3). The lipofuscin levels in 6-gingerol treated intestinal worms were decreased in comparison to the control group. No significant 6-gingerol-related changes, including growth, food intake, reproduction, and movement were noted. These results suggest that 6-gingerol exerted longevity-promoting activities independently of these factors and could extend the human lifespan.

Effects of Antibiotics(Avoparcin, Nosiheptide, Enramycin) as Supplementary Growth Promoters on the Performance of Broiler Chickens (성장촉진용 항생제(Avoparcin, Nosiheptide, Enramycin)가 육계의 생산성에 미치는 영향)

  • 서상훈;엄재상;남궁환;백인기
    • Korean Journal of Poultry Science
    • /
    • v.21 no.2
    • /
    • pp.83-92
    • /
    • 1994
  • In order to study performance enhancing effects of supplementary antibiotics (avoparcin, nosiheptide and enramycin), two feeding trials were conducted. In Experiment 1, 1, 040 male Arbor Acres were reared in floor pens for 6 wk. Chicks were assigned to one of the following four treatments: Basal diet(B), B+avoparcin 10 ppm, B+nosiheptide 2.5 ppm and B+enramycin 5 ppm. Each treatment had five replications of 52 chicks each. In Experiment 2, two antibiotics (avoparcin and enramycin) were compared in $2{\times}2$ (antibiotics$\times$sex) factorial design. One thousand broiler chicks were reared in floor pens for 6 wk. Each of the 4 treatments had five replications of 50 chicks each. The results of Experiment 1 showed that antibiotic treatments (enramycin, avoparcin and nosiheptide) significantly(P <0.05) improved weight gain. Feed/gain ratio of avoparcin treatment and enramycin treatment tended to he lower than the control but they were not statistically significant. Dressing percentages were high in avoparcin and enramycin treatments compared to the control and nosiheptide treatment. The number of E. coli and Cl. perfringens in ileum and cecal contents were decreased by antibiotic treatments. Moisture contents in excreta of the birds were not significantly affected by the treatments. Leg abnormality and mortality were not significaniy different among treatments. In Experiment 2, weight gain was significantly (P<0.01) different between sexes, but not between antibiotic treatments. Significant effects of antibiotics (P<0.01), sex (P<0.01) and interaction (P<0.05) were shown in feed in take. Feed/gain ratio of avoparcin treatment was significantly (P<0.01) lower than that of enramycin treatment. leg abnormality and mortality were not significantly different among treatments but those in male broiler tended to be higher than in female broilers. It was concluded that nonsystemic antibiotics supplemented to the broiler diets suppress undesirable microorganisms and improve broiler performace in general and avoparcin was most effective in improving feed/gain ratio.

  • PDF

Bifidobacterium adolescentis P2P3, a Human Gut Bacterium Having Strong Non-Gelatinized Resistant Starch-Degrading Activity

  • Jung, Dong-Hyun;Kim, Ga-Young;Kim, In-Young;Seo, Dong-Ho;Nam, Young-Do;Kang, Hee;Song, Youngju;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1904-1915
    • /
    • 2019
  • Resistant starch (RS) is metabolized by gut microbiota and involved in the production of short-chain fatty acids, which are related to a variety of physiological and health effects. Therefore, the availability of RS as a prebiotic is a topic of interest, and research on gut bacteria that can decompose RS is also important. The objectives in this study were 1) to isolate a human gut bacterium having strong degradation activity on non-gelatinized RS, 2) to characterize its RS-degrading characteristics, and 3) to investigate its probiotic effects, including a growth stimulation effect on other gut bacteria and an immunomodulatory effect. Bifidobacterium adolescentis P2P3 showing very strong RS granule utilization activity was isolated. It can attach to RS granules and form them into clusters. It also utilizes high-amylose corn starch granules up to 63.3%, and efficiently decomposes other various types of commercial RS without gelatinization. In a coculture experiment, Bacteroides thetaiotaomicron ATCC 29148, isolated from human feces, was able to grow using carbon sources generated from RS granules by B. adolescentis P2P3. In addition, B. adolescentis P2P3 demonstrated the ability to stimulate secretion of Th1 type cytokines from mouse macrophages in vitro that was not shown in other B. adolescentis. These results suggested that B. adolescentis P2P3 is a useful probiotic candidate, having immunomodulatory activity as well as the ability to feed other gut bacteria using RS as a prebiotic.

Screening of Indigenous Strains of Lactic Acid Bacteria for Development of a Probiotic for Poultry

  • Karimi Torshizi, M.A.;Rahimi, Sh.;Mojgani, N.;Esmaeilkhanian, S.;Grimes, J.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.10
    • /
    • pp.1495-1500
    • /
    • 2008
  • In an attempt to develop a probiotic formulation for poultry feed, a number of lactic acid bacteria (LAB) were isolated from chicken intestinal specimens and a series of in vitro experiments were performed to evaluate their efficacy as a potential probiotic candidate. A total of 650 LAB strains were isolated and screened for their antagonistic potential against each other. Among all the isolates only three isolates (TMU121, 094 and 457) demonstrated a wide spectrum of inhibition and were thus selected for detailed investigations. All three selected isolates were able to inhibit the growth of E. coli and Salmonella species, although to variable extent. The nature of the inhibitory substance produced by the isolates TMU121 and 094 appeared to be associated with bacteriocin, as their activity was completely lost after treatment with proteolytic enzymes, while pH neutralization and catalase enzyme had no effect on the residual activity. In contrast, isolate TMU457 was able to resist the effect of proteolytic enzymes while pH neutralization completely destroyed its activity. Attempts were made to study the acid, bile tolerance and cell surface hydrophobicity of these isolates. TMU121 showed high bile salt tolerance (0.3%) and high cell surface hydrophobicity compared to the other two strains studied, while TMU094 appeared the most pH resistant strain. Based on these results, the three selected LAB isolates were considered as potential ingredients for a chicken probiotic feed formulation and were identified to species level based on their carbohydrate fermentation pattern by using API 50CH test kits. The three strains were identified as Lactobacillus fermentum TMU121, Lactobacillus rhamnosus TMU094, and Pediococcus pentosaceous TMU457.

Microbial composition in different gut locations of weaning piglets receiving antibiotics

  • Li, Kaifeng;Xiao, Yingping;Chen, Jiucheng;Chen, Jinggang;He, Xiangxiang;Yang, Hua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.78-84
    • /
    • 2017
  • Objective: The aim of this study was to examine shifts in the composition of the bacterial population in the intestinal tracts (ITs) of weaning piglets by antibiotic treatment using high-throughput sequencing. Methods: Sixty 28-d-old weaning piglets were randomly divided into two treatment groups. The Control group was treated with a basal diet without antibiotics. The Antibiotic group's basal diet contained colistin sulfate at a concentration of 20 g per ton and bacitracin zinc at a concentration of 40 g per ton. All of the pigs were fed for 28 days. Then, three pigs were killed, and the luminal contents of the jejunum, ileum, cecum, and colon were collected for DNA extraction and high-throughput sequencing. Results: The results showed that the average daily weight gain of the antibiotic group was significantly greater (p<0.05), and the incidence of diarrhea lower (p>0.05), than the control group. A total of 812,607 valid reads were generated. Thirty-eight operational taxonomic units (OTUs) that were found in all of the samples were defined as core OTUs. Twenty-one phyla were identified, and approximately 90% of the classifiable sequences belonged to the phylum Firmicutes. Forty-two classes were identified. Of the 232 genera identified, nine genera were identified as the core gut microbiome because they existed in all of the tracts. The proportion of the nine core bacteria varied at the different tract sites. A heat map was used to understand how the numbers of the abundant genera shifted between the two treatment groups. Conclusion: At different tract sites the relative abundance of gut microbiota was different. Antibiotics could cause shifts in the microorganism composition and affect the composition of gut microbiota in the different tracts of weaning piglets.

Effects of Dietary L-Carnitine and Protein Level on Plasma Carnitine, Energy and Carnitine Balance, and Carnitine Biosynthesis of 20 kg Pigs

  • Heo, K.N.;Odle, J.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1568-1575
    • /
    • 2000
  • Growing pigs (N=25; 18 kg) were used to study effects of L-carnitine and protein intake on plasma carnitine, energy and carnitine balance, and carnitine biosynthesis. Corn-soybean meal basal diets containing low or high protein (13.6% or 18%) were formulated so that protein accretion would be limited by metabolizable energy (ME). Each basal diet was supplemented with 0 or 500 mg/kg L-carnitine and limit fed to pigs for 10 d in a balance trial. Final carnitine concentration was compared with weight/age matched pigs measured on d 0 to calculate carnitine retention rates. Supplementation of carnitine increased (p<0.01) plasma free carnitine (by 250%), short-chain (by 160%) and long-chain acyl-carnitine concentrations (by 80%) irrespective of blood sampling time (p<0.01). The proportion of long-chain carnitine esters decreased by 40% (p<0.01) by carnitine supplementation; whereas, the proportion of short-chain acyl-carnitine concentration was not changed (p>0.10). All criteria of energy balance were unaffected by L-carnitine (p>0.10). Total body carnitine retention was increased by 450% over unsupplemented controls (p<0.01). Carnitine biosynthesis rates in pigs fed diets without L-carnitine were estimated at 6.71 and $10.63{\mu}mol{\cdot}kg^{-1}{\cdot}d^{-1}$ in low protein and high protein groups, respectively. In supplemented pigs, L-carnitine absorption and degradation in the intestinal tract was estimated at 30-40% and 60-70% of L-carnitine intake, respectively. High protein feeding effect did not affected plasma carnitine concentrations, carnitine biosynthesis or carnitine retention (p>0.10). We conclude that endogenous carnitine biosynthesis may be adequate to maintain sufficient tissue levels during growth, but that supplemental dietary carnitine (at 500 ppm) sufficiently increased plasma acyl-carnitine and total body carnitine.

Identification of Lactobacillus ruminus SPM0211 Isolated from Healthy Koreans and Its Antimicrobial Activity against Some Pathogens

  • Yun Ji-Hee;Yim Dong-sool;Kang Jin-Yang;Kang Byung-Yong;Shin Eun-ah;Chung Myung-Jun;Kim Soo-Dong;Baek Dae-Heoun;Kim Kyungjae;Ha Nam-Joo
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.660-666
    • /
    • 2005
  • The intestinal microbiota are important to the host with regard to resistance they impart against bacterial infections and their involvement in mediating metabolic functions. Lactic acid producing bacteria such as Lactobacillus play an important physiological role in these matters. The aim of the present study was to isolate Lactobacillus sp. that inhibits enteric pathogens. Initially, 17 isolates from healthy Koreans were collected on Lactobacillus selective medium. Resistance of the isolates to antibiotics including rifampicin, streptomycin, clindamycin and vancomycin was measured. One of the isolate was identified as Lactobacillus ruminus on the basis of bacterial cell morphology, cultural characteristic and biochemical characteristics, 16S rRNA sequence analysis and PCR-RAPD. Antimicrobial activity of the bacterium against Vancomycin Intermediate Resistant Staphylococcus aureus (VISA) and Vancomycin-Resistant Enterococci (VRE) was measured. About $10^4$ cells of VISA or VRE were mixed with 1, 5, and 9 mL of L. ruminus SPM 0211 and the final volume was adjusted to 10 mL with brain heart infusion (BHI) broth. The cell suspension was incubated for 3, 6, 9, and 24 h, serially diluted and then plated on BHI agar plates. As numbers of L. ruminus SPM 0211 were increased, viable cell count of VISA and VRE decreased. The strongest antimicrobial activity of SPM 0211 was observed after 9 h incubation in any mixture, almost completely inhibiting the growth of these two bacteria. The results suggest that the freshly isolated L. ruminus SPM 0211 may be used as a pro-biotic microbe that prevents the colonization of enteric pathogens and can thereby promote good gastrointestinal health.