• Title/Summary/Keyword: Intestinal Flora

Search Result 93, Processing Time 0.035 seconds

Novel Phenol Sulfotransferase of Klebsiella K-36, Rat Intestinal Bacteria (흰쥐의 장내미생물로부터 분리한 새로운 페놀 설포트란스페라제)

  • Kim, Hyung-Soo;Kim, Dong-Hyun
    • YAKHAK HOEJI
    • /
    • v.36 no.2
    • /
    • pp.167-172
    • /
    • 1992
  • Klebsiella K-36 producing novel sulfotransferase was isolated from rat intestinal flora. The novel sulfotransferase catalyzed the transfer of sulfate group from p-nitrophenylsulfate to phenolic compounds but it did not use PAPS(3'-phosphoadenosine 5'-phosphosulfate) as a donor substrate. The present enzyme was 160 K daltons. Optimal pH was 10. When p-nitrophenyl sulfate was used as a donor substrate, 1-naphthol was the best substrate, followed by phenol, phenanthrol and tyrosine. The apparent Km for phenol using p-nitrophenylsulfate as a donor substrate and that for p-nitrophenylsulfate using phenol as an acceptor substrate were determined to be 0.66 mM and 0.11 mM, respectively.

  • PDF

Isolation of Sulfotransferase Producing Bacteria from Mouse Intestinal Microflora (생쥐의 장내미생물로부터 새로운 슬포트란스훼라제 생산균의 분리)

  • Kim, Byung-Taek;Kim, Eun-Ha;Kim, Dong-Hyun
    • YAKHAK HOEJI
    • /
    • v.36 no.5
    • /
    • pp.455-459
    • /
    • 1992
  • Haemophilus K-12 producing novel sulfotransferase was isolated from mouce intestinal flora. The enzyme catalyzed the transfer of sulfate group from p-nitrophenylsulfate to phenolic compounds. The optimum medium condition for the sulfotransferase production was 0.2% sucrose, 1% yeast extract, $Na_{2}HPO_4$ and 0.5% NaCl. The enzyme production was induced by donor substrate, but was not by accepters. When p-nitrophenylsulfate was used as a donor substrate, 1-naphthol was best substrate, followed by phenol, p-acetaminophenol and tyramine.

  • PDF

A PCR Denaturing Gradient Gel Electrophoresis (DGGE) Analysis of Intestinal Microbiota in Gastric Cancer Patients Taking Anticancer Agents (PCR-DGGE를 통해 분석한 항암치료에 따른 장내 미생물 변화)

  • Yu, Sun Nyoung;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1290-1298
    • /
    • 2017
  • Intestinal microbiota is an important factor in the development of immune defense mechanisms in the human body. Treatments with anticancer agents, such as 5-Fluorouracil, Cisplatin, and Oxaliplatin, significantly change the temporal stability and environment of intestinal bacterial flora. The anticancer treatment chemotherapy often depresses the immune system and induces side effects, such as diarrhea. This study investigated the effects anticancer agents have on the intestinal microbial ecosystems of patients with gastric cancer. An exploration of the diversity and temporal stability of the dominant bacteria was undertaken using a DGGE with the 16S rDNA gene. Researchers collected stool samples from patients zero, two and eight weeks after the patients started chemotherapy. After the treatment with anticancer agents, the bacteria strains Sphingomonas paucimobilis, Lactobacillus gasseri, Parabacteroides distasonis and Enterobacter sp. increased. This study focused on the survival of the beneficial microorganisms Bifidobacterium and Lactobacillus in the intestines of cancer patients. The administration of antigastric cancer agents significantly decreased Lactobacillus and Bifidobacterium populations and only moderately affected the main bacterial groups in the patients' intestinal ecosystems. The results showed the versatility of a cultivation independent-PCR DGGE analysis regarding the visual monitoring of ecological diversity and anticancer agent-induced changes in patients' complex intestinal microbial ecosystems.

L-arginine and N-carbamoylglutamic acid supplementation enhance young rabbit growth and immunity by regulating intestinal microbial community

  • Sun, Xiaoming;Shen, Jinglin;Liu, Chang;Li, Sheng;Peng, Yanxia;Chen, Chengzhen;Yuan, Bao;Gao, Yan;Meng, Xianmei;Jiang, Hao;Zhang, Jiabao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.166-176
    • /
    • 2020
  • Objective: An experiment was conducted to determine the effects of L-arginine (L-Arg) and N-carbamoylglutamic acid (NCG) on the growth, metabolism, immunity and community of cecal bacterial flora of weanling and young rabbits. Methods: Eighteen normal-grade male weanling Japanese White rabbits (JWR) were selected and randomly divided into 6 groups with or without L-Arg and NCG supplementation. The whole feeding process was divided into weanling stage (day 37 to 65) and young stage (day 66 to 85). The effects of L-Arg and NCG on the growth, metabolism, immunity and development of the ileum and jejunum were compared via nutrient metabolism experiments and histological assessment. The different communities of cecal bacterial flora affected by L-Arg and NCG were assessed using high-throughput sequencing technology and bioinformatics analysis. Results: The addition of L-Arg and NCG enhanced the growth of weanling and young rabbit by increasing the nitrogen metabolism, protein efficiency ratio, and biological value, as well as feed intake and daily weight gain. Both L-Arg and NCG increased the concentration of immunoglobulin A (IgA), IgM, and IgG. NCG was superior to L-Arg in promoting intestinal villus development by increasing villus height, villus height/crypt depth index, and reducing the crypt depth. The effects of L-Arg and NCG on the cecal bacterial flora were mainly concentrated in different genera, including Parabacteroides, Roseburia, dgA-11_gut_group, Alistipes, Bacteroides, and Ruminococcaceae_UCG-005. These bacteria function mainly in amino acid transport and metabolism, energy production and conversion, lipid transport and metabolism, recombination and repair, cell cycle control, cell division, and cell motility. Conclusion: L-Arg and NCG can promote the growth and immunity of weanling and young JWR, as well as effecting the jejunum and ileum villi. L-Arg and NCG have different effects in the promotion of nutrient utilization, relieving inflammation and enhancing adaptability through regulating microbial community.

Clinical efficacy and mechanism of probiotics in allergic diseases

  • Kim, Ha-Jung;Kim, Hyung Young;Lee, So-Yeon;Seo, Ju-Hee;Lee, Eun;Hong, Soo-Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.9
    • /
    • pp.369-376
    • /
    • 2013
  • A complex interplay between genetic and environmental factors partially contributes to the development of allergic diseases by affecting development during prenatal and early life. To explain the dramatic increase in the prevalence of allergic diseases, the hygiene hypothesis proposed that early exposure to infection prevented allergic diseases. The hygiene hypothesis has changed to the microbial hypothesis, in which exposure to microbes is closely linked to the development of the early immune system and allergic diseases. The intestinal flora may contribute to allergic disease through its substantial effect on mucosal immunity. Based on findings that exposure to microbial flora early in life can change the Th1/Th2 balance, thus favoring a Th1 cell response, probiotics may be beneficial in preventing allergic diseases. However, evidence from clinical and basic research to prove the efficacy of probiotics in preventing allergy is lacking. To date, studies have yielded inconsistent findings on the usefulness of probiotics in allergic diseases. It is difficult to demonstrate an exact effect of probiotics on asthma, allergic rhinitis, and food allergy because of study limitations, such as different first supplementation period, duration, different strains, short follow-up period, and host factors. However, many studies have demonstrated a significant clinical improvement in atopic dermatitis with the use of probiotics. An accurate understanding of the development of human immunity, intestinal barrier function, intestinal microbiota, and systemic immunity is required to comprehend the effects of probiotics on allergic diseases.

Rapid Detection of Growth factors of intestinal Lactic Acid Bacteria (장내유산균 증식인자의 신속한 검색)

  • 한명주;임혜영;김동현
    • Journal of Food Hygiene and Safety
    • /
    • v.8 no.2
    • /
    • pp.91-95
    • /
    • 1993
  • The growth of Bifidobacterium and Lactobacillus isolated from human interstinal bacteria were induced by water extract and U-step extract of soybean and carrot and the pH of these bacteria-cultured media were decreased. The increasing growth rates of these bacteria are related to the decrease of the pH of these bacteria-cultured media. When human intestinal flora as starter were inoculated into the medium containing water extract of soybean and carrot. the growth of lactic bacteria were also induced and the pH of the media were decreased. By measuring the pH of the media which were inoculated and cultured intestinal bacteria as a starter, it is possible to determine whether the food are the growth factors of intestinal lactic acid bacteria or not. By this method, the food which decreased pH of the medium were soybean, turnip, carrot. leek, garic, dropwork, wonnwood and onion. 'These foods may induce lactic acid bacteria in human in1estlne.

  • PDF

Bacterial flora and antibiotics resistance of intestinal bacteria in the wild and cultured black rockfish, Sebastes inermis (자연산 및 양식산 볼락, Sebastes inermis의 장내세균총 및 장내세균의 약제내성 비교)

  • Kim, Seok-RyeI;Kim, Jeong-Ho;Jung, Sung-Ju;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.20 no.3
    • /
    • pp.221-227
    • /
    • 2007
  • In this study, one hundred strains of bacterial flora were isolated from the intestine of cultured and wild black rockfish Sebastes inermis collected in Yeosu and examined for drug resistance to 9 antibiotics. From cultrued fish, the isolated bacteria were Photobacterium group (26 strains) and Acinetobacter group (18 strains) of Gram-negative, and unidentified marine sediment bacterium (6 strains) of Gram-positive. From wild fish, Photobacterium group (18 strains), Acinetobacter group (12 strains) and Shewanella group (5 strains) of Gram-negative and Bacillus group (8 strains), Staphylococcus group (4 strains), and unidentified marine sediment bacterium (3 strains) of Gram-positive. Intestine flora of wild black rockfish was more diverse than that of one cultured. The drugs tested were tetracyclines (oxytetracycline), aminoglycosides (gentamicin), macrorides (erythromycin) and quinolones (flumequine, oxolinic acid, norfloxacin, ofloxacin, enrofloxacin and ciprofloxacin). Sensitivity to all seven antibiotics except oxytetracycline and oxolinic acid was higher in bacteria from wild fish than from cultured ones, although wild isolates were more resistant than control strain Escherichia coli ATCC9637. This suggests that use of antibiotics in the fish farm might have some resistance in intestinal flora of wild fish.

Effects of Lactic Acid Bacteria on intestinal Microbial Enzyme Activity and Composition in Rats Treated with Azoxymethane

  • Sang-Myeong;Lee, Wan-Kyu
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.154-161
    • /
    • 2001
  • In recent years, colon cancer has been reported to be one of the most important causes of cancer morbidity and mortality in Korea. Epidemiological and experimental studies suggest that lactic acid bacteria (LAB) used to ferment dairy products inhibits colon carcinogenesis. The present study was designed to determine whether the colon cancer inhibitory effect of LAB (Bifidobacterium longum Hy8001; Bif and Lactobacillus acidophilus HY2l04; Lac) of Korean origin, is associated with intestinal microflora composition and certain enzyme activity in rats treated with azoxymethane (AOM). At five weeks of age, SD rats were divided at random into four (AOM alone, Bif, Lac, and Bif+Lac) groups. Oral administration of lactic acid bacteria cultures were performed daily until the termination of the study. Two weeks later all animals were given a subcutaneous injection of AOM dissolved in normal saline at a dose of 15 mg/kg of body weight once weekly for 2 weeks. Every two weeks for 10 weeks, five of the rats in each group were randomly chosen for fecal specimen collection. The fecal specimens were used for assay of $\beta$-glucuronidase and nitroreductase, and analysis of intestinal microflora composition. The activity of $\beta$-glucuronidase which plays an important role in the production of the carcinogenic metabolite of azoxymethane was remarkably increased in the AOM alone group after AOM injection and maintained the high level during the experiment. However, LAB inhibited the AOM-induced increase in $\beta$-glucuronidase activity. Nitroreductase activity decreased by 30-40% in LAB treated groups in comparison with that of the AOM alone group. The results of the present study suggest that LAB inhibits colon carcinogenesis by modulating the metabolic activity of intestinal micro-flora and improving the composition of intestinal microflora.

  • PDF

Effect of Mushrooms on the Growth of Intestinal Lactic Acid Bacteria (버섯의 장내 유산균 증식 효과)

  • Han, M.J.;Bae, E.A.;Rhee, Y.K.;Kim, D.H.
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.947-952
    • /
    • 1996
  • The objective of this study was to evaluate the effect of mushrooms on the growth of intestinal lactic acid bacteria. Bifidobacterium breve and the total intestinal flora of human and rats were inoculated in the general anaerobic medium which contained each mushroom water extract. Except Pleurotus ostreatus and Flammulina velutipes, the mushroom extracts induced the growth of lactic acid bacteria by decreasing pH of the broth. The pH decreasing effect was excellent especially with Lentinus edodes, Agarocus bisporus and Coriorus versicolor. This effect was due to the increase in the number of Bifidobacterium in the intestinal bacterid. This growth of lactic acid bacteria effectively inhibited the bacterial enzymes, ${\beta}-glucosidase,\;{\beta}-glucuronidase$ and tryptophanase, of intestinal bactetria.

  • PDF

Quantitative and Qualitative Studies of Commensal Bacterial Flora of Clam, Ruditapes philippinarum in Hadong Area (하동 지역에 서식하는 바지락의 미생물총 분포에 관한 정량 및 정성적 분석)

  • Kim, Myoung-Sug;Park, Jun-Hyu;Ha, Jai-Yi;Huh, Min-Do;Huh, Sung-Hoi;Jeong, Hyun-Do
    • Journal of fish pathology
    • /
    • v.11 no.2
    • /
    • pp.143-150
    • /
    • 1998
  • Characteristics and distribution of the natural commensal flora in the surrounding environment and tissues of clam in Hadong area were studied under varying conditions of growth media and incubation temperatures. Total numbers of bacteria present in intestinal tract, gill, body fluid and surrounding mud were found to be not influenced by the used BHIA, STA and SNA media. Although the growth rate of bacteria at the condition of $15^{\circ}C$ incubation temperature was slower than that of $25^{\circ}C$ and $35^{\circ}C$, it showed the highest number of total bacteria compared with other two different conditions of incubation temperature. Interestingly, the proportion of bacteria able to form colony on several selective media was higher in replica analysis from nutrient media to selective media than that in direct smearing from samples. The generic diversity of bacteria isolated from the tissues and analyzed by API 20E and API 20NE kit showed similar pattern with each other and distinct from that of environment. The distribution of bacteria in the surrounding mud or mantle fluid of clam indicated a high diversity comparable to that found for the gill or intestinal tract microflora, with Pseudomonas being the prevalent group. It implies that the tissues of clam may probide a selective habitat for a commensal microflora.

  • PDF