• 제목/요약/키워드: Interval prediction

검색결과 411건 처리시간 0.025초

Fast Incremental Checkpoint Based on Page-Level Rewrite Interval Prediction

  • Huang, Yulei
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.859-869
    • /
    • 2020
  • This paper introduces page-level rewrite interval prediction (PRWIP). By recording and analyzing the memory access history at page-level, we are able to predict the future memory accesses to any pages. Leveraging this information, this paper proposes a faster incremental checkpoint design by overlapping checkpoint phase with computing phase and thus achieves higher performance. Experimental results show that our new incremental checkpoint design can achieve averagely 22% speedup over traditional incremental checkpoint and 14% over the previous state-of-the-art work.

AVI 자료를 이용한 동적 통행시간 예측 (Dynamic Travel Time Prediction Using AVI Data)

  • 장진환;백남철;김성현;변상철
    • 대한교통학회지
    • /
    • 제22권7호
    • /
    • pp.169-175
    • /
    • 2004
  • 본 논문은 일반국도 실시간 통행시간 정보제공을 위한 동적 통행시간 예측모형을 개발했다. 교통정보 제공을 위한 통행시간 예측에 관한 기존의 많은 연구가 있었지만, 우리나라에서 일반국도에 대한 통행시간 예측모형은 아직 없었다. 통행시간 예측을 위해 현재 일반국도 1호선에 약 10km 간격으로 연속하여 설치된 AVI자료를 이용했고, 예측모형 평가를 위한 통행시간 기준값 수집을 위해 프로브차량을 이용했다. 본 논문에 사용된 일반국도 1호선 구간은 잦은 유출 입 지점으로 인해 원시 AVI 자료에 많은 이상치가 관측되었다. 이러한 이상치를 제거하기 위해 저자가 제안한 알고리즘을 사용하여 이상치를 제거한 후, 칼만필터링 알고리즘을 이용하여 통행시간을 예측했다. 수집주기를 달리하여 예측모형을 평가한 결과 5분, 10분, 15분 수집주기에 대해서는 MARE가 $0.061{\sim}0.066$로 비슷하게 나왔고, 30분 수집주기는 0.078로 나와 다소 높은 오차율을 나타냈다.

뇌졸중 환자의 기능회복에 대한 예측모델 (A Prediction Model for Functional Recovery After Stroke)

  • 원종임;이미영
    • 한국전문물리치료학회지
    • /
    • 제17권3호
    • /
    • pp.59-67
    • /
    • 2010
  • Mortality rates from stroke have been declining. Because of this, more people are living with residual disability. Rehabilitation plays an important role in functional recovery of stroke survivors. In stroke rehabilitation, early prediction of the obtainable level of functional recovery is desirable to deliver efficient care, set realistic goals, and provide appropriate discharge planning. The purpose of this study was to identify predictors of functional outcome after stroke using inpatient rehabilitation as measured by Functional Independence Measure (FIM) total scores. Correlation and stepwise multiple regression analyses were performed on data collected retrospectively from two-hundred thirty-five patients. More than moderate correlation was found between FIM total scores at the time of hospital admission and FIM total scores at the time of discharge from the hospital. Significant predictors of FIM at the time of discharge were FIM total scores at the time of hospital admission, age, and onset-admission interval. The equation was as follows: expected discharge FIM total score = $76.12+.62{\times}$(admission FIM total score)-$.38{\times}(age)-.15{\times}$(onset-admission interval). These findings suggest that FIM total scores at the time of hospital admission, age, and onset-admission interval are important determinants of functional outcome.

Spatio-temporal Load Forecasting Considering Aggregation Features of Electricity Cells and Uncertainties in Input Variables

  • Zhao, Teng;Zhang, Yan;Chen, Haibo
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.38-50
    • /
    • 2018
  • Spatio-temporal load forecasting (STLF) is a foundation for building the prediction-based power map, which could be a useful tool for the visualization and tendency assessment of urban energy application. Constructing one point-forecasting model for each electricity cell in the geographic space is possible; however, it is unadvisable and insufficient, considering the aggregation features of electricity cells and uncertainties in input variables. This paper presents a new STLF method, with a data-driven framework consisting of 3 subroutines: multi-level clustering of cells considering their aggregation features, load regression for each category of cells based on SLS-SVRNs (sparse least squares support vector regression networks), and interval forecasting of spatio-temporal load with sampled blind number. Take some area in Pudong, Shanghai as the region of study. Results of multi-level clustering show that electricity cells in the same category are clustered in geographic space to some extent, which reveals the spatial aggregation feature of cells. For cellular load regression, a comparison has been made with 3 other forecasting methods, indicating the higher accuracy of the proposed method in point-forecasting of spatio-temporal load. Furthermore, results of interval load forecasting demonstrate that the proposed prediction-interval construction method can effectively convey the uncertainties in input variables.

Prediction of 305 Days Milk Production from Early Records in Dairy Cattle Using an Empirical Bayes Method

  • Pereira, J.A.C.;Suzuki, M.;Hagiya, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권11호
    • /
    • pp.1511-1515
    • /
    • 2001
  • A prediction of 305 d milk production from early records using an empirical Bayes method (EBM) was performed. The EBM was compared with the best predicted estimation (BPE), test interval method (TIM), and the linearized Wood's model (LWM). Daily milk yields were obtained from 606 first lactation Japanese Holstein cows in three herds. From each file of 305 daily records, 10 random test day records with an interval of approximately one month were taken. The accuracies of these methods were compared using the absolute difference (AD) and the standard deviation (SD) of the differences between the actual and the estimated 305 d milk production. The results showed that in the early stage of the lactation, EBM was superior in obtaining the prediction with high accuracy. When all the herds were analyzed jointly, the AD during the first 5 test day records were on average 373, 590, 917 and 1,042 kg for EBM, BPE, TIM, and LWM, respectively. Corresponding SD for EBM, BPE, TIM, and LWM were on average 488, 733, 747 and 1,605 kg. When the herds were analyzed separately, the EBM predictions retained high accuracy. When more information on the actual lactation was added to the prediction, TIM and LWM gradually achieved better accuracies. Finally, in the last period of the lactation, the accuracy of both of the methods exceeded EBM and BPM. The AD for the last 2 samples analyzing all the herds jointly were on average 141, 142, 164, and 214 kg for LWM, TIM, EBM, and BPE, respectively. In the current practices of collecting monthly records, early prediction of future milk production may be more accurate using EBM. Alternatively, if enough information of the actual lactation is accumulated, TIM may obtain better accuracy in the latter stage of lactation.

Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval

  • Seo, Sang-Wook;Lee, Dong-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권1호
    • /
    • pp.31-36
    • /
    • 2008
  • This paper presents adaptive learning data of evolvable neural networks (ENNs) for time series prediction of nonlinear dynamic systems. ENNs are a special class of neural networks that adopt the concept of biological evolution as a mechanism of adaptation or learning. ENNs can adapt to an environment as well as changes in the enviromuent. ENNs used in this paper are L-system and DNA coding based ENNs. The ENNs adopt the evolution of simultaneous network architecture and weights using indirect encoding. In general just previous data are used for training the predictor that predicts future data. However the characteristics of data and appropriate size of learning data are usually unknown. Therefore we propose adaptive change of learning data size to predict the future data effectively. In order to verify the effectiveness of our scheme, we apply it to chaotic time series predictions of Mackey-Glass data.

동적선형모형을 이용한 서울지역 3시간 간격 기온예보 (The 3-hour-interval prediction of ground-level temperature using Dynamic linear models in Seoul area)

  • 손건태;김성덕
    • 응용통계연구
    • /
    • 제15권2호
    • /
    • pp.213-222
    • /
    • 2002
  • 이 논문에서는 서울지역 기온에 대한 향후 48시간까지 3시간 간격 예보 모델 개발 결과이 다. 동적 변화패턴과 수치모델의 체계적 오차를 제거하기 위하여 동적 선형모형으로 적합하였으며 , 수치모델 예측치와 관측치를 입력 변수로 사용하였다. 동적 선형모형에 의한 예측모델은 수치모델의 체계적 오차를 성공적으로 제거하였으며, 예측 정확도를 향상시키고 있다.

Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval

  • Lee, Dong-Wook;Kong, Seong-G;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.920-924
    • /
    • 2005
  • This paper presents adaptive learning data of evolvable neural networks (ENNs) for time series prediction of nonlinear dynamic systems. ENNs are a special class of neural networks that adopt the concept of biological evolution as a mechanism of adaptation or learning. ENNs can adapt to an environment as well as changes in the environment. ENNs used in this paper are L-system and DNA coding based ENNs. The ENNs adopt the evolution of simultaneous network architecture and weights using indirect encoding. In general just previous data are used for training the predictor that predicts future data. However the characteristics of data and appropriate size of learning data are usually unknown. Therefore we propose adaptive change of learning data size to predict the future data effectively. In order to verify the effectiveness of our scheme, we apply it to chaotic time series predictions of Mackey-Glass data.

  • PDF

최적 TS 퍼지 모델 기반 다중 모델 예측 시스템의 구현과 시계열 예측 응용 (Multiple Model Prediction System Based on Optimal TS Fuzzy Model and Its Applications to Time Series Forecasting)

  • 방영근;이철희
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.101-109
    • /
    • 2008
  • In general, non-stationary or chaos time series forecasting is very difficult since there exists a drift and/or nonlinearities in them. To overcome this situation, we suggest a new prediction method based on multiple model TS fuzzy predictors combined with preprocessing of time series data, where, instead of time series data, the differences of them are applied to predictors as input. In preprocessing procedure, the candidates of optimal difference interval are determined by using con-elation analysis and corresponding difference data are generated. And then, for each of them, TS fuzzy predictor is constructed by using k-means clustering algorithm and least squares method. Finally, the best predictor which minimizes the performance index is selected and it works on hereafter for prediction. Computer simulation is performed to show the effectiveness and usefulness of our method.

  • PDF

머신러닝 기반의 온실 VPD 예측 모델 비교 (Comparison of Machine Learning-Based Greenhouse VPD Prediction Models)

  • 장경민;이명배;임종현;오한별;신창선;박장우
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권3호
    • /
    • pp.125-132
    • /
    • 2023
  • 본 연구에서는 식물의 영양분 흡수에 따른 식물 성장뿐만 아니라 기공 기능 및 광합성에도 영향을 끼치는 온실의 수증기압차(VPD, Vapor Pressure Deficit)예측을 위한 머신러닝 모델들의 성능을 비교해보았다. VPD 예측을 위해 온실 내·외부 환경요소 및 시계열 데이터의 시간적 요소들과의 상관관계를 확인하고 상관관계가 높은 요소들이 VPD에 어떤 영향을 미치는지 확인하였다. 예측 모델의 성능을 분석하기 전 분석 시계열 데이터의 양(1일, 3일, 7일), 간격(20분, 1시간)이 예측 성능에 미치는 영향을 확인하여 데이터의 양과 간격을 조절하였다. 마지막으로 4개의 머신러닝 예측 모델(XGB Regressor, LGBM Regressor, Random Forest Regressor 등)을 적용하여 모델별 예측 성능을 비교했다. 모델의 예측 결과로 20분 간격의 1일의 데이터를 사용했을 때 LGBM에서 MAE는 0.008, RMSE는 0.011의 가장 높은 예측 성능을 보였다. 또한 20분 후 VPD 예측에 가장 큰 영향을 미치는 요소는 환경적 요인보다는 과거 20분 전의 VPD(VPD_y__71)임을 확인하였다. 본 연구의 결과를 활용하여 VPD 예측을 통해 작물의 생산성을 높이고, 온실의 결로, 병 발생 예방 등이 가능하다. 향후 온실의 환경 데이터 예측뿐만 아니라 더 나아가 생산량 예측, 스마트팜 제어 모델 등 다양한 분야에 활용할 수 있을 것이다.