• 제목/요약/키워드: Interval Type-2 TSK 퍼지 논리시스템

검색결과 4건 처리시간 0.023초

유전자 알고리즘에 의한 Interval Type-2 TSK Fuzzy Logic System의 설계 및 해석 (Design and Analysis of Interval Type-2 Fuzzy Logic System by Means of Genetic Algorithms)

  • 김대복;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.249-250
    • /
    • 2008
  • 본 논문에서는 Interval Type-2 TSK 퍼지 논리 시스템을 설계하고 기존의 Type-1 TSK 퍼지 논리 시스템과 비교 분석한다. Type-1 TSK 퍼지 논리 시스템과 Interval Type-2 TSK 퍼지 논리 시스템을 비교하기 위해 노이즈에 영향을 받은 목적 데이터를 사용한다. 유전자 알고리즘을 사용하여 전반부의 중심값의 학습률과 후반부 계수값의 학습률을 결정한다.

  • PDF

Interval Type-2 TSK 퍼지논리시스템 기반 다중 퍼지 예측시스템 설계 (Design of Multiple Fuzzy Prediction System based on Interval Type-2 TSK Fuzzy Logic System)

  • 방영근;이철희
    • 한국지능시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.447-454
    • /
    • 2010
  • 본 논문은 예측 시스템의 성능을 개선하기 위해 비선형데이터의 내재된 특성이나 불확실성을 보다 효과적으로 반영할 수 있는 Interval Type-2 TSK 퍼지논리 시스템 기반 다중 퍼지 예측시스템의 설계를 다룬다. 본 논문에 제시된 다중 예측시스템들은 데이터의 비선형적 특성들을 효과적으로 고려하기 위해 설계되며, 각각의 시스템은 Type-1 TSK 퍼지논리나 다른 방법들에 비해 데이터의 불확실성을 충분히 반영할 수 있는 Interval Type-2 TSK 퍼지논리를 기반으로 구현된다. 또한, 1차 차분변환 과정을 통해, 데이터의 원형으로부터 최적의 차분데이터를 생성하고, 이들을 각 시스템의 입력으로 사용함으로써 시스템 설계 시 보다 안정된 통계적 정보를 제공할 수 있도록 한다. 마지막으로, 두 개의 전형적인 시계열 데이터의 예측 시뮬레이션을 통해 제안된 방법의 효용성을 검증한다.

Interval Type-2 TSK 퍼지 추론 시스템의 설계 (Design of Interval Type-2 TSK Fuzzy Inference System)

  • 지광희;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1849-1850
    • /
    • 2008
  • Type-2 퍼지 집합은 Type-1 퍼지 집합의 확장으로 Type-1 퍼지 집합으로는 다루기 힘든 언어적인 불확실성을 다루기 위해 고안되었다. 대표적인 퍼지 논리 시스템(Fuzzy Logic System; FLS)으론 Mamdani FLS 모델과 TSK FLS모델이 있다. 본 논문에서는 Interval Type-2 TSK FLS를 구성한다. FLS 구성을 위한 전반부는 가우시안 형태의 Type-2 멤버쉽 함수를 사용하며, 전.후반부 파라미터들은 오류역전파 알고리즘을 통한 학습으로 결정한다. 본 논문에서는 Type-1 TSK FLS와 Interval Type-2 TSK FLS를 설계하고 가스로 공정 데이터에 적용하여 성능을 비교 분석한다. 또한 노이즈를 추가한 데이터들을 통하여 노이즈에 대한 성능도 비교 분석한다.

  • PDF

HCBKA를 이용한 Interval Type-2 퍼지 논리시스템 기반 예측 시스템 설계 (Prediction System Design based on An Interval Type-2 Fuzzy Logic System using HCBKA)

  • 방영근;이철희
    • 산업기술연구
    • /
    • 제30권A호
    • /
    • pp.111-117
    • /
    • 2010
  • To improve the performance of the prediction system, the system should reflect well the uncertainty of nonlinear data. Thus, this paper presents multiple prediction systems based on Type-2 fuzzy sets. To construct each prediction system, an Interval Type-2 TSK Fuzzy Logic System and difference data were used, because, in general, it has been known that the Type-2 Fuzzy Logic System can deal with the uncertainty of nonlinear data better than the Type-1 Fuzzy Logic System, and the difference data can provide more steady information than that of original data. Also, to improve each rule base of the fuzzy prediction systems, the HCBKA (Hierarchical Correlation Based K-means clustering Algorithm) was applied because it can consider correlationship and statistical characteristics between data at a time. Subsequently, to alleviate complexity of the proposed prediction system, a system selection method was used. Finally, this paper analyzed and compared the performances between the Type-1 prediction system and the Interval Type-2 prediction system using simulations of three typical time series examples.

  • PDF