• Title/Summary/Keyword: Interval Query

Search Result 49, Processing Time 0.024 seconds

Efficient Query Indexing for Short Interval Query (짧은 구간을 갖는 범위 질의의 효율적인 질의 색인 기법)

  • Kim, Jae-In;Song, Myung-Jin;Han, Dae-Young;Kim, Dae-In;Hwang, Bu-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.4
    • /
    • pp.507-516
    • /
    • 2009
  • In stream data processing system, generally the interval queries are in advance registered in the system. When a data is input to the system continuously, for realtime processing, a query indexing method is used to quickly search queries. Thus, a main memory-based query index with a small storage cost and a fast search time is needed for searching queries. In this paper, we propose a LVC-based(Limited Virtual Construct-based) query index method using a hashing to meet the both needs. In LVC-based query index, we divide the range of a stream into limited virtual construct, or LVC. We map each interval query to its corresponding LVC and the query ID is stored on each LVC. We have compared with the CEI-based query indexing method through the simulation experiment. When the range of values of input stream is broad and there are many short interval queries, the LVC-based indexing method have shown the performance enhancement for the storage cost and search time.

QUISIS: A Query Index Method Using Interval Skip List (QUISIS: Interval Skip List를 활용한 질의 색인 기법)

  • Min, Jun-Ki
    • The KIPS Transactions:PartD
    • /
    • v.15D no.3
    • /
    • pp.297-304
    • /
    • 2008
  • Due to the proliferation of the Internet and intranet, new application domains such as stream data processing have emerged. Stream data is real-timely and continuously generated. In stream data environments, a lot of queries are registered, and then, the arrived data item is evaluated by registered queries. Thus, to accelerate the query performance, diverse continuous query index schemes have been proposed for stream data processing systems. In this paper, we focus on the query index technique for stream data. In general, a stream query contains the range condition. Thus, by using range conditions, the queries can be indexed. In this paper, we propose an efficient query index scheme, called QUISIS, using a modified Interval Skip Lists to accelerate search time. QUISIS utilizes a locality where a value which will arrive in near future is similar to the current value. Through the experimental study, we show the efficiency of our proposed method.

Load Shedding for Temporal Queries over Data Streams

  • Al-Kateb, Mohammed;Lee, Byung-Suk
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.294-304
    • /
    • 2011
  • Enhancing continuous queries over data streams with temporal functions and predicates enriches the expressive power of those queries. While traditional continuous queries retrieve only the values of attributes, temporal continuous queries retrieve the valid time intervals of those values as well. Correctly evaluating such queries requires the coalescing of adjacent timestamps for value-equivalent tuples prior to evaluating temporal functions and predicates. For many stream applications, the available computing resources may be too limited to produce exact query results. These limitations are commonly addressed through load shedding and produce approximated query results. There have been many load shedding mechanisms proposed so far, but for temporal continuous queries, the presence of coalescing makes theses existing methods unsuitable. In this paper, we propose a new accuracy metric and load shedding algorithm that are suitable for temporal query processing when memory is insufficient. The accuracy metric uses a combination of the Jaccard coefficient to measure the accuracy of attribute values and $\mathcal{PQI}$ interval orders to measure the accuracy of the valid time intervals in the approximate query result. The algorithm employs a greedy strategy combining two objectives reflecting the two accuracy metrics (i.e., value and interval). In the performance study, the proposed greedy algorithm outperforms a conventional random load shedding algorithm by up to an order of magnitude in its achieved accuracy.

Implementation and Evaluation of Time Interval Partitioning Algorithm in Temporal Databases (시간 데이타베이스에서 시간 간격 분할 알고리즘의 구현 및 평가)

  • Lee, Kwang-Kyu;Shin, Ye-Ho;Ryu, Keun-Ho;Kim, Hong-Gi
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • Join operation exert a great effect on the performance of system in temporal database as in the relational database. Especially, as for the temporal join, the optimization of interval partition decides the performance of query processing. In this paper, to improve the efficiency of parallel join query in temporal database. I proposed Minimum Interval Partition(MIP) scheme that time interval partitioning. The validity of this MIP algorithm that decides minimum breakpoint of the partition is proved by example scenario and I confirmed improved efficiency as compared with existing partition algorithm.

CONTINUOUS QUERY PROCESSING IN A DATA STREAM ENVIRONMENT

  • Lee, Dong-Gyu;Lee, Bong-Jae;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.3-5
    • /
    • 2007
  • Many continuous queries are important to be process efficiently in a data stream environment. It is applied a query index technique that takes linear performance irrespective of the number and width of intervals for processing many continuous queries. Previous researches are not able to support the dynamic insertion and deletion to arrange intervals for constructing an index previously. It shows that the insertion and search performance is slowed by the number and width of interval inserted. Many intervals have to be inserted and searched linearly in a data stream environment. Therefore, we propose Hashed Multiple Lists in order to process continuous queries linearly. Proposed technique shows fast linear search performance. It can be utilized the systems applying a sensor network, and preprocessing technique of spatiotemporal data mining.

  • PDF

A Temporal Relational Database:Modeling and Language

  • Kim, Jae-Kyeong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.2
    • /
    • pp.139-158
    • /
    • 1995
  • A temporal database systems provides timing information and maintains history of data compared to the conventional database system. In this paper, we present a temporal relational database which use an interval-stamping method for instant-based events and for interval-based states. A set of temporal algebraic operators are developed on an instance of time and interval of time so that we can manipulate events and states at a same time. The set of operation is the basis for creating a relational algebra that is closed for temporal relations. And temporal SQL is also suggested as a temporal query relational language for our algebraic operations on temporal relations.

  • PDF

A Continuous Range Query Processing of Reciprocal Moving Objects (상호 이동성을 갖는 이동 객체의 연속 범위 질의 처리)

  • Choi, Kil-Seong;Seo, Sang-Seok;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.285-290
    • /
    • 2004
  • Processing the continuous queries which perform the identical query in given time interval is required because of the continuous change of location of the moving object. Thus the continuous query may cause loads to the server or network and take the cost of processing time because the continuous query is performed in server as the moving object's location changes. In this paper, we propose the query processing technique to perform the continuous range query that is a sort of continuous query effectively The proposed query processing technique predicts the query result and the validity of query answer to perform the continuous query for reciprocal moving object. And it enables to process effectively the query that moves dynamically.

  • PDF

Energy-Efficient Routing for Data Collection in Sensor Networks (센서 네트워크에서의 데이타 수집을 위한 라우팅 기법)

  • Song, In-Chul;Roh, Yo-Han;Hyun, Dong-Joon;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.33 no.2
    • /
    • pp.188-200
    • /
    • 2006
  • Once a continuous query, which is commonly used in sensor networks, is issued, the query is executed many times with a certain interval and the results of those query executions are collected to the base station. Since this comes many communication messages continuously, it is important to reduce communication cost for collecting data to the base station. In sensor networks, in-network processing reduces the number of message transmissions by partially aggregating results of an aggregate query in intermediate nodes, or merging the results in one message, resulting in reduction of communication cost. In this paper, we propose a routing tree for sensor nodes that qualify the given query predicate, called the query specific routing tree(QSRT). The idea of the QSRT is to maximize in-network processing opportunity. A QSRT is created seperately for each query during dissemination of the query. It is constructed in such a way that during the collection of query results partial aggregation and packet merging of intermediate results can be fully utilized. Our experimental results show that our proposed method can reduce message transmissions more than 18% compared to the existing one.

A Structured Overlay Network Scheme Based on Multiple Different Time Intervals

  • Kawakami, Tomoya
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1447-1458
    • /
    • 2020
  • This paper describes a structured overlay network scheme based on multiple different time intervals. Many types of data (e.g., sensor data) can be requested at specific time intervals that depend on the user and the system. These queries are referred to as "interval queries." A method for constructing an overlay network that efficiently processes interval queries based on multiple different time intervals is proposed herein. The proposed method assumes a ring topology and assigns nodes to a keyspace based on one-dimensional time information. To reduce the number of forwarded messages for queries, each node constructs shortcut links for each interval that users tend to request. This study confirmed that the proposed method reduces the number of messages needed to process interval queries. The contributions of this study include the clarification of interval queries with specific time intervals; establishment of a structured overlay network scheme based on multiple different time intervals; and experimental verification of the scheme in terms of communication load, delay, and maintenance cost.

A Query Index for Processing Continuous Queries over RFID Tag Data (RFID 태그 데이타의 연속질의 처리를 위한 질의 색인)

  • Seok, Su-Wook;Park, Jae-Kwan;Hong, Bong-Hee
    • Journal of KIISE:Databases
    • /
    • v.34 no.2
    • /
    • pp.166-178
    • /
    • 2007
  • The ALE specification of EPCglobal is leading the development of RFID standards, includes the Event Cycle Specification (ECSpec) describing how long a cycle is, how to filter RFID tag data and which reader is interested in. The ECSpec is a specification for filtering and collecting RFID tag data. It is registered to a middleware for long time and is evaluated to return results satisfying the requirements included in it. Thus, it is quite similar to the continuous query. It can be transformed into a continuous query as its predicate in WHERE clause is characterized by the long interval. Long intervals cause problems deteriorating insertion and search performance of existing query indices. In this paper, we propose a TLC-index as a new query index structure for long interval data. The TLC-index has hybrid structure that uses the cell construct of CQI-index with the virtual construct of VCR-index for partitioning long intervals. The TLC-index can reduce the storage cost and improve the insertion performance through decomposing long intervals into one or more cell constructs that have long size. It can also improve the search performance through decomposing short intervals into one or more virtual constructs that have short size enough to fit into those intervals.