• Title/Summary/Keyword: Intersection control

Search Result 264, Processing Time 0.022 seconds

Analysis of the Efficiency Technology Transfer Offices in Management: The Case of Spain and Kazakhstan

  • KIREYEVA, Anel A.;TURDALINA, Sharbanu;MUSSABALINA, Dinara;TURLYBEKOVA, Nadira M.;AKHMETOVA, Zauresh B.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.8
    • /
    • pp.735-746
    • /
    • 2020
  • This research is defined as a study regarding on structured and systematized of existing literature review of the intersection between intellectual property management, management and technology transfer offices (TTOs). It takes a deeper look at requirements within universities, scientific institutions and the business environment should be interconnected with each other. The literature review shows that TTOs have control over the process of knowledge transfer and they have contributed to improving the efficiency of the use of production and human resources. In this paper, authors proposed the methodological tools based on methodology model, which identified success factors for using project management in TTO between two countries - Kazakhstan and Spain. Further, we used methodology is focused on solving the problems of quantitative analysis based on the use of primary data, which allowed us to reach a huge number of respondents without any restrictions, and secondary data from statistical database. Findings and results are summarized at the end of article show that Kazakhstan is following the path of the Spanish experience. However, Kazakhstan can become more successful in commercializing scientific technologies and transferring knowledge and technologies. In turn, Spain can use the data from our analysis to work on barriers and improve the activities of TTOs.

Development of a Cycle-free Based, Cooridinated Dynamic Signal Timing Model for Minimizing Delay (Using Genetic Algorithm) (지체도 최소화를 위한 주기변동기반 동적신호시간 결정모헝 개발)

  • 이영인;최완석;임재승
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.1
    • /
    • pp.115-129
    • /
    • 2001
  • The purpose of this study is to develop a cycle-free signal timing model for minimizing delays based on Third-generation control concept using Genetic Algorithm. A special feature of this model is its ability to manage delays of turning movements on the cycle basis. The model produces a cycle-free based signal timing(cycles and green times) for each intersection to minimize delays of turning movements on the cycle basis. The performance of cycle-free signal timings was evaluated on normal (v/c = 0.7) and oversaturated (v/c=1.0) conditions. The performance measures are throughput and the number of queued vehicles at the end of green time. The result shows that the cycle free signal timing is superior to the fixed signal timing to manage traffic flows of intersections; (1) the proposed model accomplishes the basic objective of the research, producing cycle free signal timings on the cycle basis, (2) on normal conditions, cycle free signal timings produce less queued vehicles at the end of green time, and (3) on oversaturated conditions, the cycle free signal timing is superior to the fixed signal timing to manage saturated traffic flows of intersections.

  • PDF

A Study on Driver Behavior and Dilemma Zone during Yellow Interval at Signalized Intersections (신호교차로 황색현시에서의 운전자 형태 및 딜레마 구간 연구방안)

  • 이승환;이성호;박주남
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.4
    • /
    • pp.7-16
    • /
    • 2003
  • Objective of this research is to analyze drivers' behaviors at signalized intersection during yellow interval. For this, deceleration rate of stopping, PRT(Perception-Response Time), and the relationship between dilemma zone and deceleration rate of stopping were surveyed at two signalized intersections located at urban area(Songtan and Suwon) and local area(Yongin) As a result, the deceleration rate of stopping at signalized intersections and a range of dilemma zone were estimated. It was found that the deceleration rate of stopping and PRT were 1.6m/sec$^2$ and 1.27sec, respectively. These values are bigger than ITE's values which have been used in our country. Accordingly, it is considered that these values should be used as a new design criteria for the traffic signal control.

Development of Determining Technique of Optimum Signal Time of Intersections On Median Exclusive Bus Lane using Bus-only Signal (중앙버스전용차로 버스전용신호 도입시 신호 최적화에 관한 연구)

  • Kim, Bo-Gyeom;Kim, Seung-Il;Kim, Yeong-Chan;Kim, Jin-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.5 s.91
    • /
    • pp.123-133
    • /
    • 2006
  • Seoul and many large cities in Korea have implemented Median Exclusive Bus Lane(MEB). But exclusive bus lane in the middle of the road caused new contradictions between left turn movement and through bus movement and several signal operation techniques like 'left turn Protected' and 'overlap phase' couldn't be applied in intersections on MEB. We suggest 'Bus-only Signal for median lane technique as solution of these problems This study presents optimum signal time design process and detailed algorithms for intersections where bus-only signals are installed. As a test field. we took Yang-Je intersection where Median Exclusive Bus Lane go through. and have large gap in volume of left turn in main direction. And we verified that revised optimum signal time including overlap phase can reduce average delay time of vehicle through before and after simulation.

Applicability Evaluation of FMCW Radar Detector on Signal Intersections (FMCW 레이더 검지기 신호교차로 적용성 평가)

  • Ko, Kwang-Yong;Kim, Min-Sung;Lee, Choul-Ki;Jeong, Jun-Ha;Heo, Nak-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • Intrusive Vehicle Detectors have excellent detection performance compared to other types of detector, but disadvantages of high installation and maintenance costs, short life time due to greater damage to roads and paving materials. In contrast, Non-Intrusive Vehicle Detectors attached to the stationary pole have advantages because it does not damage the road surface and easy and less expensive to maintain. Despite these advantages, Non-Intrusive type detectors are still not been widely used in traffic signal control systems because of the low detection performance. In this study, a FMCW(Frequency Modulated Continuous Wave) radar Vehicle Detector was designed as an alternative detector for the signalized intersection, and the performance evaluation was presented by purpose applicability.

A deep learning-based approach for feeding behavior recognition of weanling pigs

  • Kim, MinJu;Choi, YoHan;Lee, Jeong-nam;Sa, SooJin;Cho, Hyun-chong
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1453-1463
    • /
    • 2021
  • Feeding is the most important behavior that represents the health and welfare of weanling pigs. The early detection of feed refusal is crucial for the control of disease in the initial stages and the detection of empty feeders for adding feed in a timely manner. This paper proposes a real-time technique for the detection and recognition of small pigs using a deep-leaning-based method. The proposed model focuses on detecting pigs on a feeder in a feeding position. Conventional methods detect pigs and then classify them into different behavior gestures. In contrast, in the proposed method, these two tasks are combined into a single process to detect only feeding behavior to increase the speed of detection. Considering the significant differences between pig behaviors at different sizes, adaptive adjustments are introduced into a you-only-look-once (YOLO) model, including an angle optimization strategy between the head and body for detecting a head in a feeder. According to experimental results, this method can detect the feeding behavior of pigs and screen non-feeding positions with 95.66%, 94.22%, and 96.56% average precision (AP) at an intersection over union (IoU) threshold of 0.5 for YOLOv3, YOLOv4, and an additional layer and with the proposed activation function, respectively. Drinking behavior was detected with 86.86%, 89.16%, and 86.41% AP at a 0.5 IoU threshold for YOLOv3, YOLOv4, and the proposed activation function, respectively. In terms of detection and classification, the results of our study demonstrate that the proposed method yields higher precision and recall compared to conventional methods.

Advantages and disadvantages of renewable energy-oil-environmental pollution-from the point of view of nanoscience

  • Shunzheng Jia;Xiuhong Niu;Fangting Jia;Tayebeh Mahmoudi
    • Advances in concrete construction
    • /
    • v.16 no.1
    • /
    • pp.69-78
    • /
    • 2023
  • This investigation delves into the adverse repercussions stemming from the impact of arsenic on steel pipes concealed within soil designated for rice cultivation. Simultaneously, the study aims to ascertain effective techniques for detecting arsenic in the soil and to provide strategies for mitigating the corrosion of steel pipes. The realm of nanotechnology presents promising avenues for addressing the intricate intersection of renewable energy, oil, and environmental pollution from a novel perspective. Nanostructured materials, characterized by distinct chemical and physical attributes, unveil novel pathways for pioneering materials that exert a substantial impact across diverse realms of food production, storage, packaging, and quality control. Within the scope of the food industry, the scope of nanotechnology encompasses processes, storage methodologies, packaging paradigms, and safeguards to ensure the safety of consumables. Of particular note, silver nanoparticles, in addition to their commendable antibacterial efficacy, boast anti-fungal and anti-inflammatory prowess, environmental compatibility, minimal irritability and allergenicity, resilience to microbial antagonism, thermal stability, and robustness. Confronting the pressing issue of arsenic contamination within both environmental settings and the food supply is of paramount importance to preserve public health and ecological equilibrium. In response, this study introduces detection kits predicated upon silver nanoparticles, providing an expeditious and economically feasible avenue for identifying arsenic concentrations ranging from 0.5 to 3 ppm within rice. Subsequent quantification employs Hydride Atomic Absorption Spectroscopy (HG-AAS), which features a detection threshold of 0.05 ㎍/l. A salient advantage inherent in the HG-AAS methodology lies in its capacity to segregate analytes from the sample matrix, thereby significantly reducing instances of spectral interference. Importantly, the presence of arsenic in the soil beneath rice cultivation establishes a causative link to steel pipe corrosion, with potential consequences extending to food contamination-an intricate facet embedded within the broader tapestry of renewable energy, oil, and environmental pollution.

Assessment of Bicycle Left-turn Traffic Control Strategies at Signalized Intersections (신호교차로의 자전거 좌회전 운영방안 평가에 관한 연구)

  • Lee, Chung Min;Lee, Sang Soo;Cho, Hanseon;Nam, Doohee
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.6
    • /
    • pp.579-588
    • /
    • 2014
  • In this study, three signal control strategies such as Bike box, Hook-turn, and 6-phase were assessed for various traffic conditions at signalized intersections incorporating bicycle left-turn traffic. Results showed that the size of a waiting zone mainly affected the performance of signal control in both Bike box and Hook-turn. Both Bike box and Hook-turn yielded an identical vehicle delay, but Bike box produced less bicycle delay than Hook-turn by 2.5~29.9 sec/veh for undersaturated traffic conditions. For saturated traffic condition, Bike box produced less vehicle delay than Hook-turn and 6-phase strategies, but bicycle delay was found to increase at the 700 vph of bicycle traffic compared to 6-phase. Bicycle delay was greatly increased under Hook-turn and Bike box strategies when bicycle traffic was greater than 300 vph and 500 vph, respectively. It was also shown that bicycle delay could be significantly reduced by providing appropriate size of queueing space. In addition, Bike box was likely to yield less vehicle and bicycle delay than Hook-turn for traffic volume patterns investigated in this study.

An Effectiveness Analysis of pedestrian crosswalk signal on roundabout (회전교차로의 보행신호 설치효과 분석)

  • Moon, Joo-Baek;Lee, In-Kyu;Kim, Young-Chan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.2
    • /
    • pp.63-75
    • /
    • 2013
  • Roundabouts have been operated in Europe, America and Australia since the 1970s, and many relevant researches continually was carried out. Though many studies regarding roundabout have been recently conducted in korea, most of them have focused on its operational safety and efficiency. Moreover, roundabout design guideline did not define a clear criteria related to pedestrian in roundabout, but seldom investigate the influences of pedestrian on crosswalk. In this study, we seek ways to operate the pedestrian crosswalk signal on roundabout maximizing their operational effects in exceptional case such as rush hour or intersection near the special facilities. We proved that roundabout signal operation is effective under certain circumstances in according to the number of pedestrian, and suggested the optimal signal timing plan for signalized roundabouts. For pursuing the above, we conducted the simulation test using the VISSIM model. The results show that the operational effectiveness of signalized roundabout was evaluated to be better than non-signalized roundabout in specific pedestrian volume condition. In addition, those results are confirmed using simulation analysis conducted on the real roundabout.

Research on Earthquake Occurrence Characteristics Through the Comparison of the Yangsan-ulsan Fault System and the Futagawa-Hinagu Fault System (양산-울산 단층계와 후타가와-히나구 단층계의 비교를 통한 지진발생특성 연구)

  • Lee, Jinhyun;Gwon, Sehyeon;Kim, Young-Seog
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.195-209
    • /
    • 2016
  • The understanding of geometric complexity of strike-slip Fault system can be an important factor to control fault reactivation and surface rupture propagation under the regional stress regime. The Kumamoto earthquake was caused by dextral reactivation of the Futagawa-Hinagu Fault system under the E-W maximum horizontal principal stress. The earthquakes are a set of earthquakes, including a foreshock earthquake with a magnitude 6.2 at the northern tip of the Hinagu Fault on April 14, 2016 and a magnitude 7.0 mainshock which generated at the intersection of the two faults on April 16, 2016. The hypocenters of the main shock and aftershocks have moved toward NE direction along the Futagawa Fault and terminated at Mt. Aso area. The intersection of the two faults has a similar configuration of ${\lambda}$-fault. The geometries and kinematics, of these faults were comparable to the Yansan-Ulsan Fault system in SE Korea. But slip rate is little different. The results of age dating show that the Quaternary faults distributed along the northern segment of the Yangsan Fault and the Ulsan Fault are younger than those along the southern segment of the Yansan Fault. This result is well consistent with the previous study with Column stress model. Thus, the seismic activity along the middle and northern segment of the Yangsan Fault and the Ulsan Fault might be relatively active compared with that of the southern segment of the Yangsan Fault. Therefore, more detailed seismic hazard and paleoseismic studies should be carried out in this area.