• Title/Summary/Keyword: Intersection control

Search Result 264, Processing Time 0.026 seconds

A Method of Conclusion of Traffic Control Signal Proposal using Fuzzy Analytic Hierachy Process (퍼지AHP를 이용한 교통신호제어기의 교통대안확정방법)

  • Jin, Hyun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1592-1598
    • /
    • 2008
  • Fixed cycle traffic signal controller is pattern type controller. This method is that one concluding traffic proposal affect fixed cycle controller to deciding cycle time during 24 hours. Traffic intersection jam is caused traffic controller supervisor input wrong traffic proposal. The available to traffic controller is traffic proposal is not selected by an outward look but propriety traffic proposal is compared with each other. This paper presents that property traffic proposal adopted to fixed cycle controller by fuzzy analytic hierachy process and new proposal adopted fixed cycle controller is compared with others.

Development of a Reference-Pulse Type 3-Axis Simultaneously Controlled PC-NC Milling System (Reference-Pulse 방식 3축 동시제어 PC-NC 밀링 시스템 개발에 관한 연구)

  • Yang, Min-Yang;Hong, Won-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.197-203
    • /
    • 1999
  • Increasing demands on precision machining have necessitated the tool to move not only position error as small as possible, but also with smoothly varying feedrates. Because of the lack of accurate and efficient algorithms for generation of 3-dimensional lines and circles, a full accomlishment for available machine tool resolution is generally unavailable. In this paper, a reference-pulse type 3-axis PC_NC milling system is developed for the precision machining of complex shapes in 3-dimensional space. Three AC servomotors are used as the actuator instead of the hand wheel to operate a 3-axis milling machine under the same mechanical structure. A PC is used to handle the control signal calculation for various types of motion command. To achieve the synchronous 3-axis motion, a real-time reference-pulse 3-dimensional linear and circular interpolator based on the intersection criteria is developed in software. The performance test via computer simulation and actual machining have shown that the PC-NC milling system is useful for the machining of arbitrary lines and circles in 3-dimensional space.

  • PDF

Design and characterization of a Muon tomography system for spent nuclear fuel monitoring

  • Park, Chanwoo;Baek, Min Kyu;Kang, In-soo;Lee, Seongyeon;Chung, Heejun;Chung, Yong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.601-607
    • /
    • 2022
  • In recent years, monitoring of spent nuclear fuel inside dry cask storage has become an important area of national security. Muon tomography is a useful method for monitoring spent nuclear fuel because it uses high energy muons that penetrate deep into the target material and provides a 3-D structure of the inner materials. We designed a muon tomography system consisting of four 2-D position sensitive detector and characterized and optimized the system parameters. Each detector, measuring 200 × 200 cm2, consists of a plastic scintillator, wavelength shifting (WLS) fibers and, SiPMs. The reconstructed image is obtained by extracting the intersection of the incoming and outgoing muon tracks using a Point-of-Closest-Approach (PoCA) algorithm. The Geant4 simulation was used to evaluate the performance of the muon tomography system and to optimize the design parameters including the pixel size of the muon detector, the field of view (FOV), and the distance between detectors. Based on the optimized design parameters, the spent fuel assemblies were modeled and the line profile was analyzed to conduct a feasibility study. Line profile analysis confirmed that muon tomography system can monitor nuclear spent fuel in dry storage container.

An Analysis of Odors in Traditional Market in Wonju, Gangwon-do

  • KIM, Su-Hye;LEE, Woo-Sik;JEONG, Tae-Hwan;JUNG, Min-Jae
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.3
    • /
    • pp.19-25
    • /
    • 2022
  • Purpose: As interest in odor increases, odor complaints are also rapidly increasing. Traditional markets are not included in malodor control areas and are not easy to manage, so measure the odor substances generated in traditional markets and analyze the cause of high concentration points. Research design, data and methodology: The average value was presented by continuously measuring the combined odor, TVOC, hydrogen sulfide, and ammonia for 5 minutes at 100m intervals in Joong-ang traditional market, Jayu traditional market, Doraemi traditional market, and Sundae Alley in Wonju, Gangwon-do. In each market, up to the third highest concentration point for each measurement item was marked and analyzed. Results: The Joong-ang traditional market, Doraemi traditional market, and Sundae Alley had high readings at the intersection. The Jayu traditional market had high measurements around restaurants and clothing stores. In addition, the concentration of complex malodors was also high at the points where the hydrogen sulfide concentration was measured. Conclusions: Odor generated in traditional markets is an important indicator for merchants and consumers. Therefore, in future studies, analysis that can supplement the limitations of measurement data and seasonal effects is needed.

Construction of sports hall flooring with excellent properties by nanocomposites

  • Xianfang Zhang
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.155-164
    • /
    • 2024
  • The rapid evolution of intelligent sports equipment and gadgets has led to the transformation of smartphones into personalized coaching devices. This transformative role is central in today's technologically advanced landscape, addressing the needs of individuals with contemporary lifestyles. The development of intelligent sports gadgets is geared towards elevating overall quality of life by facilitating sports activities, workouts, and promoting health preservation. This categorization yields two primary types of devices: smart sports devices for exercise and smart health control devices, which encompass functionalities such as blood pressure monitoring and muscle volume measurement. Illustrative examples include smart headbands, smart socks, smart wristbands, and smart shoe soles. Significantly, the global market for smart sports devices has garnered substantial popularity among enthusiasts. Moreover, the integration of sensors within these devices has instigated a revolution in group and professional sports, facilitating the calculation of impact intensity and ball speed. The utilization of various types of smart sports equipment has proliferated, encompassing applications in both sports' performance and health monitoring across diverse demographics. This article conducts an assessment of the application of nanotechnology in the continuous modeling of the magnetic electromechanical sensor integrated within smart shoe soles, with a specific emphasis on its implementation in soccer training. The exploration delves into the nuanced intersection of nanotechnology and sports equipment, elucidating the intricate mechanisms that underlie the transformative impact of these advancements.

A Study on the Development of an Economic Efficiency Model Considering Vehicle Operating Cost Properties of Signalized Intersections (신호교차로의 차량운행비용 특성을 고려한 경제성분석 모형개발)

  • Byeon, Eun-A;Kim, Yeong-Chan;An, So-Yeong;Go, Gwang-Deok;Yun, Su-Yeong
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.199-206
    • /
    • 2009
  • In relation with economical efficiency analysis on investment evaluation of transportation system, among vehicle operating cost saving benefit that is applied to general preliminary assessment guidelines and investment evaluation guidelines, oil expense calculated data which concentrated and analyze on the relationship between oil consumption amount on running state and running speed. For uninterrupted flow which does not have stopped delay due to traffic signal, consideration for reduction benefit is possible due to the changes of running speed and travel time however, for interrupted flow which the stopping occurs due to signal control on actual signal intersection has no consideration for stopping delay time reduction and stopping rate improvement thus reflection of reality on improved effect analysis is difficult. Therefore, this research makes a framework to analyze benefits that reflects the features of signalized intersections by benefits associated with decrease of stopping delay time with existing research and developing vehicle operating cost calculation model formula. Vehicle operating cost has been redefined considering the stopping delay time by applying the oil consumption amount at idling and the economical benefit between conventional model and newly developed model when applied for the optimization of traffic signal system on the two roads in Seosan city has been analyzed comparative. While the importance of traffic system maintenance is being emphasized due to the increase of congested areas on roads, it is expected to assist in more realistic economical analysis which reflect the delay improvement through the presentation of an economic analysis model that considers the features of signalized intersections in signal optimization system improvements and effect analysis of congestion improvement projects`.

Development of a CNN-based Cross Point Detection Algorithm for an Air Duct Cleaning Robot (CNN 기반 공조 덕트 청소 로봇의 교차점 검출 알고리듬 개발)

  • Yi, Sarang;Noh, Eunsol;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.1-8
    • /
    • 2020
  • Air ducts installed for ventilation inside buildings accumulate contaminants during their service life. Robots are installed to clean the air duct at low cost, but they are still not fully automated and depend on manpower. In this study, an intersection detection algorithm for autonomous driving was applied to an air duct cleaning robot. Autonomous driving of the robot was achieved by calculating the distance and angle between the extracted point and the center point through the intersection detection algorithm from the camera image mounted on the robot. The training data consisted of CAD images of the duct interior as well as the cross-point coordinates and angles between the two boundary lines. The deep learning-based CNN model was applied as a detection algorithm. For training, the cross-point coordinates were obtained from CAD images. The accuracy was determined based on the differences in the actual and predicted areas and distances. A cleaning robot prototype was designed, consisting of a frame, a Raspberry Pi computer, a control unit and a drive unit. The algorithm was validated by video imagery of the robot in operation. The algorithm can be applied to vehicles operating in similar environments.

Interpretation of Subsurface Fracture Characteristics by Fracture Mapping and Geophysical Loggings (단열조사 및 물리검층을 통한 지표 하 단열특성 해석)

  • Chae, Byung-Gon;Lee, Dae-Ha;Kim, Yu-Sung;Hwang, Se-Ho;Kee, Weon-Seo;Kim, Won-Young;Lee, Seung-Gu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.37-56
    • /
    • 2001
  • As a preliminary study to establish fracture network model in crystalline rocks, detail investigation on fracture characteristics were performed. Five fracture sets were determined on the basis of regional survey of geological structures and fractures on outcrops. Among the fracture sets, S1 set has the highest density and longest trace length of fractures which was identified on surface in the study area. S4 and S5 sets are composed of foliations and foliation parallel shear joints of gneisses, which are very important sets at the aspect of weighting of fracture length. For characterization of subsurface fractures, detail core logging was performed to identify fractures and fracture zones from five boreholes. Acoustic televiewer logging and borehole geophysical loggings produced images, orientations and geophysical properties of fractures which intersect with boreholes. According to the result of the investigations, subsurface fractures can be grouped as three preferred orientations(B1, B2 and B3), which correspond to S1, S2 and S4/S5 of surface fracture sets, respectively. Actually, B1 set is expected to be intensely developed at subsurface. However, it has low frequency of intersection with boreholes due to its parallel or sub-parallel direction to boreholes. According to the inference of conductive fractures, B1 and B3 sets have possibilities of water flow and their intersection lines are also thought to consist of important conduits of groundwater flow. In particular, faults which are parallel to foliations control major groundwater flow in the study area.

  • PDF

GPS-based monitoring and modeling of the ionosphere and its applications for high accuracy correction in China

  • Yunbin, Yuan;Jikun, Ou;Xingliang, Huo;Debao, Wen;Genyou, Liu;Yanji, Chai;Renggui, Yang;Xiaowen, Luo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.203-208
    • /
    • 2006
  • The main research conducted previously on GPS ionosphere in China is first introduced. Besides, the current investigations include as follows: (1) GPS-based spatial environmental, especially the ionosphere, monitoring, modeling and analysis, including ground/space-based GPS ionosphere electron density (IED) through occultation/tomography technologies with GPS data from global/regional network, development of a GNSS-based platform for imaging ionosphere and atmosphere (GPFIIA), and preliminary test results through performing the first 3D imaging for the IED over China, (2) The atmospheric and ionospheric modeling for GPS-based surveying, navigation and orbit determination, involving high precisely ionospheric TEC modeling for phase-based long/median range network RTK system for achieving CM-level real time positioning, next generation GNSS broadcast ionospheric time-delay algorithm required for higher correction accuracy, and orbit determination for Low-Earth-orbiter satellites using single frequency GPS receivers, and (3) Research products in applications for national significant projects: GPS-based ionospheric effects modeling for precise positioning and orbit determination applied to China's manned space-engineering, including spatial robot navigation and control and international space station intersection and docking required for related national significant projects.

  • PDF

An Algorithm for Heavy Duty Truck Priority on Left-turn to Reduce Greenhouse Gas Emissions (온실가스 감축을 위한 대형 화물차 좌회전 우선신호 알고리즘 개발)

  • Yang, Se Jung;Kim, Suhyeon;Kim, Hyo Seung;Lee, Chungwon
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.5
    • /
    • pp.60-70
    • /
    • 2013
  • This study aims to develop a truck priority on left-turn algorithm that can reduce greenhouse gas emissions by reducing heavy duty truck's stops at signalized intersection. The signal priority is granted for a left-turn phase, because heavy duty trucks can deteriorate left-turn traffic flow due to the low acceleration or deceleration rate and large turn radius. Truck priority allows to provide the stable speed control for heavy duty truck, and reduces emissions at the signal intersection. Also, two signal recovery strategies are compared for various traffic conditions. This study analyzes the effectiveness of truck priority such as greenhouse gas emissions and fuel consumption reduction, and total travel time saving using the PARAMICS and Comprehensive Modal Emissions Model (CMEM). The results show that signal priority for heavy duty trucks has an effect on reducing greenhouse gas emissions and fuel consumptions at non-peak hour. Also, it shows decreasing total travel time due to reducing truck stops.