• Title/Summary/Keyword: Intersection Design

Search Result 275, Processing Time 0.033 seconds

Shape Optimization on the Nozzle of a Spherical Pressure Vessel Using the Ranked Bidirectional Evolutionary Structural Optimization (등급 양방향 진화적 구조 최적화 기법을 이용한 구형 압력용기 노즐부의 형상최적화)

  • Lee, Young-Shin;Ryu, Chung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.752-757
    • /
    • 2001
  • To reduce stress concentration around the intersection between a spherical pressure vessel and a cylindrical nozzle under various load conditions using less material, the optimization for the distribution of reinforcement has researched. The ranked bidirectional evolutionary structural optimization(R-BESO) method is developed recently, which adds elements based on a rank, and the performance indicator which can estimate a fully stressed model. The R-BESO method can obtain the optimum design using less iteration number than iteration number of the BESO. In this paper, the optimized intersection shape is sought using R-BESO method for a flush and a protruding nozzle. The considered load cases are a radial compression, torque and shear force.

  • PDF

Tolerance-based Point Classification Algorithm for a Polygonal Region (공차를 고려한 다각형 영역의 내외부 판별 알고리즘)

  • 정연찬;박준철
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.2
    • /
    • pp.75-80
    • /
    • 2002
  • This paper details a robust and efficient algorithm for point classification with respect to a polygon in 2D real number domain. The concept of tolerance makes this algorithm robust and consistent. It enables to define‘on-boundary’ , which can be interpreted as either‘in-’or‘out-’side region, and to manage rounding errors in floating point computation. Also the tolerance is used as a measure of reliability of point classifications. The proposed algorithm is based on a ray-intersection technique known as the most efficient, in which intersections between a ray originating from a given test point and the boundary of a region are counted. An odd number of intersections indicates that the point is inside region. For practical examples the algorithm is most efficient because most edges of the polygon region are processed by simple bit operations.

Numerical Analysis on the Estimation of Shock Loss for the Ventilation of Network-type Double-deck Road Tunnel (네트워크형 복층 도로터널 환기에서의 충격 손실 평가를 위한 수치해석적 연구)

  • Park, Sang Hoon;Roh, Jang Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.132-145
    • /
    • 2017
  • Shock loss was not applied for the tunnel ventilation of road tunnel in the past. However, pressure losses due to the shock loss can be significant in network double-deck road tunnel in which combining and separating road structures exist. For the optimum ventilation design of network double-deck road tunnel, this study conducted 3D CFD numerical analysis for the shock loss at the combining and separating flows. The CFD model was made with the real-scale model that was the standard section of double-deck road tunnel. The shock loss coefficient of various combining and separating angles and road width was obtained and compared to the existing design values. As a result of the comparison, the shock loss coefficient of the $30^{\circ}$ separating flow model was higher and that of the two-lane combining flow model was lower. Since the combining and separating angles and road width can be important for the design of shock loss estimation, it is considered that this study can provide the accurate design factors for the calculation of ventilation system capacity. In addition, this study conducted 3D CFD analysis in order to calculate the shock loss coefficient of both combining and separating flows at flared intersection, and the result was compared with the design values of ASHRAE. The model that was not widened at the intersection showed three times higher at the most, and the other model that was widened at the intersection resulted two times higher shock loss coefficients.

Automatic Calculation of Interior Volume of Refrigerator by Hole Filling Algorithm (분해모델과 구멍 메움 알고리즘을 이용한 냉장고 내부 용적의 자동 계산)

  • Park, Raesung;Fu, Jianhui;Jung, Yoongho;Park, Mingeun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.59-69
    • /
    • 2017
  • Internal capacity of a refrigerator is an important indicator for design and purchasing criteria. The components facing the internal space may have holes or gaps between parts. In traditional way, design engineers manually remodeled the parts to fill the holes and the gaps for enclosed boundary of the internal space. Then they calculated internal volume by subtracting the assembly of parts from its enclosing volume. However, filling holes and gaps is not an automated process requiring a plenty of labor and time. In this research, we have developed a voxel-based method to estimate the internal volume of a refrigerator automatically. It starts transforming all components facing the interior space into voxels and fills all holes and gaps automatically by the developed hole-filling algorithm to form a completely closed boundary of the assembly. Then, it identifies the boundary voxels that are facing to the internal voxels with any part of the component. After getting the intersection points between the boundary voxels and the surfaces of components, it generates the boundary surface of triangular facets with the intersection points. Finally, it estimates the internal volume by adding volume of each tetrahedron composed of a triangle of boundary surface and an arbitrary point.

A Study on Calculating Relevant Length of Left Turn Storages Using UAV Spatial Images Considering Arrival Distribution Characteristics at Signalized Intersections in Urban Commercial Areas

  • Yang, Jaeho;Kim, Eungcheol;Na, Young-Woo;Choi, Byoung-Gil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.153-164
    • /
    • 2018
  • Calculating the relevant length of left turn storages in urban intersections is very crucial in road designs. A left turn lane consists of deceleration lanes and left turn storages. In this study, we developed methods for calculating relevant lengths of left turn storages that vary at each intersection using UAV (Unmanned Aerial Vehicle) spatial images. Problems of conventional design techniques are applying the same number of left turn vehicles (N) using Poisson distribution without considering land use types, using a vehicle length that may not be measurable when applying the length of waiting vehicles (S), and using same storage length coefficient (${\alpha}$), 1.5, for every intersections. In order to solve these problems, we estimated the number of left turn vehicles (N) using an empirical distribution, suggested to use headways of vehicles for (S) to calculate the length of waiting vehicles (S) with a help of using UAV spatial images, and defined ranges of storage length coefficient (${\alpha}$) from 1.0 to 1.5 for flexible design. For more convenient design, it is suitable to classify two cases when possible to know and impossible to know about ratio of large trucks among vehicles when planning an intersection. We developed formula for each case to calculate left turn storage lengths of a minimum and a maximum. By applying developed methods and values, more efficient signalized intersection operation can be accomplished.

Consideration on Limitations of Square and Cube Root Scaled Distances in Controled Blast Design (제어발파설계에서 자승근 및 삼승근 환산거리 기법의 적용한계에 대한 고찰)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Jeong, Ju-Hwan
    • Explosives and Blasting
    • /
    • v.28 no.1
    • /
    • pp.27-39
    • /
    • 2010
  • Blast design equations based on the concept of scaled distances can be obtained from the statistical analysis on measured peak particle velocity data of ground vibrations. These equations represents the minimum scale distance of various recommendations for safe blasting. Two types of scaled distance widely used in Korea are the square root scaled distance (SRSD) and cube root scaled distance (CRSD). Thus, the design equations have the forms of $D/\sqrt{W}{\geq}30m/kg^{1/2}$ and $D/\sqrt[3]{W}{\geq}60m/kg^{1/3}$ in the cases of SRSD and CRSD, respectively. With these equations and known distance, we can calculate the maximum charge weight per delay that can assure the safety of nearby structures against ground vibrations. The maximum charge weights per delay, however, are in the orders of $W=O(D^2)$ and $W=O(D^3)$ for SRSD and CRSD, respectively. So, compared with SRSD, the maximum charge for CRSD increases without bound especially after the intersection point of these two charge functions despite of the similar goodness of fits. To prevent structural damage that may be caused by the excessive charge in the case of CRSD, we suggest that CRSD be used within a specified distance slightly beyond the intersection point. The exact limit is up to the point, beyond which the charge difference of SRSD and CRSD begins to exceed the maximum difference between the two within the intersection point.

A Study on the Introduction of Bus Priority Signal using Deep Learning in BRT Section (BRT 구간 딥 러닝을 활용한 버스우선 신호도입 방안에 관한 연구)

  • Lim, Chang-Sik;Choi, Yang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.59-67
    • /
    • 2020
  • In this study, a suitable algorithm for each BRT stop type is presented through the network construction and algorithm design effect analysis through the LISA, a traffic signal program, for the BRT stop type in the BRT Design Guidelines, Ministry of Land, Transport and Maritime Affairs, 2010.6. It was. The phase insert technique is the most effective method for the stop before passing the intersection, the early green technique for the stop after the intersection, and the extend green technique for the mid-block type stop. The extension green technique is used only because it consists of BRT vehicles, general vehicles and pedestrians. Analyzed. After passing through the intersection, the stop was analyzed as 56.4 seconds for the total crossing time and 29.8 seconds for the delay time. In the mid-block type stop, the total travel time of the intersection was 40.5 seconds, the delay time was 9.6 seconds, the average travel time of up and down BRT was 70.2 seconds, the delay time was 14.0 seconds, and the number of passages was 29.

The Influence of Traffic Islands on Pedestrian Safety (교통섬 설치가 보행자 교통사고에 미치는 영향 연구)

  • Lee, Su-Beom;Kim, Myeong-Suk;Jang, Il-Jun;Kim, Jang-Uk
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.107-115
    • /
    • 2009
  • Traffic islands were introduced for drivers and pedestrians to use the road in a safe and orderly way and were also a specified zone between traffic lanes to divide conflicting traffic flows and to provide pedestrian refuge. However, existing research and relevant standards described its purpose and effects only but not a safety standard to decide whether the traffic island warranted. This study was to introduce a parameter which had a high relationship with accidents by analyzing road and traffic conditions and traffic accident data at urban intersections. Based on the relationship between the parameter and the traffic accidents at the intersection, a pedestrian accident probability model was made by using a logit model. In addition, the study reviewed a pedestrian accident probability corresponding to traffic volume and size of the intersection during design of the intersection and then suggested the effectiveness of the traffic island in terms of traffic safety. In conclusion, when a large-scale intersection has significant traffic volumes, a high probability of traffic island-induced pedestrian accidents appears, while in the case of small volumes, the probability is low. Targeted design and operations of a traffic islands is necessary, because its introduction itself does not enhance pedestrian safety in all cases at all intersections. This study can be a useful reference for further development to set up a scheme of the traffic islands in terms of traffic safety.