• Title/Summary/Keyword: Interrupt Circuit

검색결과 60건 처리시간 0.029초

$SF_6$ 파퍼차단기의 수학적 모델링 II : 영전류 영역 (Mathematical Modelling of $SF_6$ Puffer Circuit Breakers II : Current Zero Region)

  • 박경엽;신영준;장기찬;송기동
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1661-1664
    • /
    • 1994
  • In designing $SF_6$ puffer circuit breakers, analyzing are behavior during current zero region and thermal recovery characteristics after current interrupt ion is very important. In this paper, a mathematical are model based on the integral method has been based to analyze them. The pressure rise in the puffer chamber and the distributions of pressure, density, velocity and enthalpy inside nozzle are calculated and analyzed at current zero region. The influence of fault current magnitude and change of di/dt at current zero on the interruption capability of puffer circuit breakers is investigated. Finally, the calculated results are compared with the available results from experiment.

  • PDF

전력용 사이리스터 MCT를 이용한 무접점 직류차단기 (Contactless DC Circuit Breakers Using MOS-controlled Thyristors)

  • 심동연;김천덕;노의철;김인동;김영학;장윤석
    • 동력기계공학회지
    • /
    • 제4권1호
    • /
    • pp.45-50
    • /
    • 2000
  • Circuit breakers have traditionally employed mechanical methods to interrupt excessive currents. According to power semiconductor technology advances in power electronic device, some mechanical breakers are replaced with solid state equivalents. Advantages of the contactors using semiconductor devices include faster fault interrupting, fault current limiting, no arc to contain or extinguish and intelligent power control, and high reliability. This paper describes the design of a static $100{\pm}10%V$ and 0 to 50A DC self-protected contactor with 85A "magnetic tripping" and 100A interruption current at $2.2A/{\mu}s$ short circuit of load condition using a new power device the HARRIS MCT (600V-75A). The self-protection circuit of this system is designed by the classical ZnO varistor for energy absorption and turn-off snubber circuit ("C" or "RCD") of the MCT.

  • PDF

Current Limiting and Interrupting Operation of Hybrid Self-Excited Type Superconducting DCCB

  • Choi, S.J.;Lim, S.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권4호
    • /
    • pp.55-59
    • /
    • 2018
  • Currently, the development of industry makes needs larger electric supply. Providers must consider the efficiency about losses and reliability of the system. In this case, DC power system can save electrical energy; long-distance transmission line losses. Relevance to switch technology with a voltage-source converter (VSC) in AC-DC conversion system have been researched. But, protection device of DC-link against fault current is still needed to study much. VSC DC power system is vulnerable to DC-cable short-circuit and ground faults, because DC-link has a huge size of capacitor filter which releases extremely large current during DC faults. Furthermore, DC has a fatal flaw that current zero crossing is nonexistence. To interrupt the DC, several methods which make a zero crossing is used; parallel connecting self-excited series LC circuit with main switch, LC circuit with power electronic device called hybrid DC circuit breaker. Meanwhile, self-excited oscillator needs a huge size capacitor that produces big oscillation current which makes zero crossing. This capacitor has a quite effective on the price of DCCB. In this paper, hybrid self-excited type superconducting DCCB which are using AC circuit breaker system is studied by simulation tool PSCAD/EMTDC.

460[V]/400[A]/85[kA] 배선용 차단기의 아크런너 변형을 통한 차단성능 향상 (Improvement of Short Circuit Performance in 460[V]/400{A]/85(kA] Molded Case Circuit Breakers)

  • 이승수;허준;윤재훈;강성화;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.394-394
    • /
    • 2009
  • Owing to the increasing number of intelligent homes(or called Smart home), the corresponding cost is much higher. Low voltage circuit breakers are widely used in the intelligent homes to interrupt fault current rapidly and to assure the reliability of the power supply. The distribution of magnetic field induced by arc current in the contact system of molded case circuit breaker(hereafter MCCB) depends on the shape, arrangement, and kinds of material of arc runner. This paper is focused on understanding the interrupting capability, more specifically of the arc runner, based on the shape of the contact system in the current MCCB. The magnetic driving force was calculated by using the flux densities induced by the arc current, which are obtained by three-dimensional finite element method. There is a need to assure that the optimum design required to analyze the electromagnetic forces of the contact system generated by current and the flux density be present. This is paper present our computational analysis on contact system in MCCB.

  • PDF

Development of 460V/225A/50㎄ Contact System in Current Limiting Molded Case Circuit Breakers

  • Park, Young-Kil;Park, Chan-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권4호
    • /
    • pp.165-172
    • /
    • 2003
  • Low voltage circuit breakers are widely used in power distribution systems to interrupt fault current rapidly and to assure the reliability of the power supply. This paper is focused on understanding the interrupting capability, more specifically of the contacts and the arc runner, based on the shape of the contact system in the current molded case circuit breaker (hereafter MCCB). Moreover, in order to improve the interrupting capability of the circuit breaker, the estimation and analysis of the interrupting capability, based on the 3-D magnetic flux analysis, were developed. Furthermore, this paper also presents results of the estimation and analysis of the interrupting capability when applied to different model breakers. In addition, this paper analyzes the efficiency of the interrupting tests by forming false current paths consisting of a three-division cascade arc runner in the contact system. With regards to the interrupting test, there is a need to assure that the optimum design required to analyze the electromagnetic forces of the contact system generated by the current and flux density be present. Based on the results of this study, this paper presents both computational analysis and test results for the newly developed MCCB 460V/225A/50㎄ contact system.

혼합 설계 환경에서의 하드웨어-소프트웨어 인터페이스 설계 (A Hardware-Software Interface Design in the Codesign Environment)

  • 장준영;배영환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(2)
    • /
    • pp.120-123
    • /
    • 2000
  • In this paper, A target architecture and interface synthesizer are proposed for processor-embedded codesign. The target architecture has the form of ARM processor based on AMBA. The interface synthesizer automatically generates an interface circuit for the communication between HW and SW. A memory map is used as the communication channel and an interrupt-based interface is applied for synchronized communication between HW and SW modules. In order to verify the function and performance of proposed target architecture and the interface synthesizer, practical test example is applied. Experimental results show the proposed interface synthesizer functioned correctly in the HW/SW codesign environment.

  • PDF

460[V]/400[A]/85[kA] 배선용 차단기의 그리드 및 아크런너 변형을 통한 차단성능 향상 (Improvement of Short Circuit Performance in 460[V]/400[A]/85[kA] Molded Case Circuit Breakers)

  • 이승수;정의환;윤재훈;강성화;임기조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1451_1452
    • /
    • 2009
  • Owing to the increasing number of intelligent homes(or called Smart home), the corresponding cost is much higher. Low voltage circuit breakers are widely used in the intelligent homes to interrupt fault current rapidly and to assure the reliability of the power supply. The distribution of magnetic field induced by arc current in the contact system of molded case circuit breaker depends on the shape, arrangement, and kinds of material of grids. This paper is focused on understanding the interrupting capability, more specifically of the grid and the arc runner, based on the shape of the contact system in the current MCCB. The magnetic driving force was calculated by using the flux densities induced by the arc current, which are obtained by three-dimensional finite element method. There is a need to assure that the optimum design required to analyze the electromagnetic forces of the contact system generated by current and the flux density be present. This is paper present our computational analysis on contact system in MCCB.

  • PDF

가스차단기 최적설계를 위한 $SF_6$ 아크 플라즈마 CAE 해석 (CAE Analysis of $SF_6$ Arc Plasma for a Gas Circuit Breaker Design)

  • 이종철;안희섭;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.365-368
    • /
    • 2002
  • The design of industrial arc plasma systems is still largely based on trial and error although the situation is rapidly improving because of the available computational power at a cost which is still fast coming down. The desire to predict the behavior of arc plasma system, thus reducing the development cost, has been the motivation of arc research. To interrupt fault current, the most enormous duty of a circuit breaker, is achieved by separating two contacts in a interruption medium, $SF_{6}$ gas or air etc., and arc plasma is inevitably established between the contacts. The arc must be controlled and interrupted at an appropriate current zero. In order to analyze arc behavior in $SF_{6}$ gas circuit breakers, a numerical calculation method combined with flow field and electromagnetic field has been developed. The method has been applied to model arc generated in the Aachen nozzle and compared the results with the experimental results. Next, we have simulated the unsteady flow characteristics to be induced by arcing of AC cycle, and conformed that the method can predict arc behavior in account of thermal transport to $SF_{6}$ gas around the arc, such as increase of arc voltage near current zero and dependency of arc radius on arc current to maintain constant arc current density.

  • PDF

저항성 누전전류에 의하여 동작하는 새로운 누전차단기 (The New Residual Current Protective Devices Operating by Resistive Leakage Current)

  • 함승진;한송엽;고창섭
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.198-207
    • /
    • 2008
  • The conventional Residual Current Protective Devices(RCD, or earth leakage circuit breaker, ELB) operates depending on the total leakage current which is the vector-sum of resistive and capacitive components of a leakage current. However, the electric disaster such as electric shock or fire is mainly caused by the resistive component. Therefore, in this view point, the RCD is more realistic when it operates by the resistive component of the leakage current. In this paper, a new algorithm for measuring the resistive leakage current from the total leakage current is suggested, and is realized to an actual circuit. According to the suggested algorithm, the resistive component of the leakage current can be found by integrating the total leakage current over only a half cycle of the line voltage, and it is realized by using analog switches and resettable integrators. It is confirmed through experiments that the suggested algorithm detects, within maximum average error of 6.74%, the resistive leakage current from the total leakage current, and the RCD employing the suggested algorithm brakes the circuit within the regular interrupt time(30msec).

저압차단기의 차단보호협조 특성연구 (A study of coordination under short-circuit conditions between circuit-breakers)

  • 오준식;나칠봉;함길호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.476-478
    • /
    • 2001
  • Coordination under short-circuit conditions is a systematic application of protective devices in the electrical power system, which, in response to a fault, will remove only a minimum amount of equipment from service. The objective is not only to minimize the equipment damage and process outage costs, but also to protect personnel from the effects of these failures. The coordination study of an electric power system consists of an organizes time-current study of all devices in series from the utilization device to the source. This study is a comparison of the time it takes the individual devices to operate when certain levels of normal or abnormal current pass through the protective devices. The objective of a coordination study is to determine the characteristics, ratings, and settings of overcurrent protective devices that will ensure that the minimum unfaulted load is interrupted when the protective devices isolate a fault or overload anywhere in the system. At the same time, the devices and settings selected should provide satisfactory protection against overloads on the equipment and interrupt short-circuit as rapidly as possible.

  • PDF