• Title/Summary/Keyword: Interpolation function

Search Result 500, Processing Time 0.021 seconds

A New Family of q-analogue of Genocchi Numbers and Polynomials of Higher Order

  • Araci, Serkan;Acikgoz, Mehmet;Seo, Jong Jin
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.1
    • /
    • pp.131-141
    • /
    • 2014
  • In the present paper, we introduce the new generalization of q-Genocchi polynomials and numbers of higher order. Also, we give some interesting identities. Finally, by applying q-Mellin transformation to the generating function for q-Genocchi polynomials of higher order put we define novel q-Hurwitz-Zeta type function which is an interpolation for this polynomials at negative integers.

Realistic individual 3D face modeling (사실적인 3D 얼굴 모델링 시스템)

  • Kim, Sang-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1187-1193
    • /
    • 2013
  • In this paper, we present realistic 3D head modeling and facial expression systems. For 3D head modeling, we perform generic model fitting to make individual head shape and texture mapping. To calculate the deformation function in the generic model fitting, we determine correspondence between individual heads and the generic model. Then, we reconstruct the feature points to 3D with simultaneously captured images from calibrated stereo camera. For texture mapping, we project the fitted generic model to image and map the texture in the predefined triangle mesh to generic model. To prevent extracting the wrong texture, we propose a simple method using a modified interpolation function. For generating 3D facial expression, we use the vector muscle based algorithm. For more realistic facial expression, we add the deformation of the skin according to the jaw rotation to basic vector muscle model and apply mass spring model. Finally, several 3D facial expression results are shown at the end of the paper.

Fast Harmonic Synthesis Method for Sinusoidal Speech-Audio Model (정현파 음성-오디오 모델의 빠른 하모닉 합성 방법)

  • Kim, Gyu-Jin;Kim, Jong-Hark;Jung, Gyu-Hyeok;Lee, In-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.109-116
    • /
    • 2007
  • Most harmonic synthesis methods using phase information employ a quadratic or cubic phase interpolation. The methods are computationally expensive to implement because every component sinewave must be synthesized on a per sample basis. In this paper, we propose a fast harmonic synthesis method for sinusoidal speech/audio coding based on the quadratic and cubic phase function to overcome the complexity problem. To derive the fast harmonic synthesis method, we define the over-sampling function and phase modulation function by constraining the parameter of phase function to be independent for harmonic index and derive the fast synthesis method using IFFT. Experimental results show that the proposed method significantly reduce the complexity of conventional cosine synthesis method while maintaining the performance.

Kriging Dimension Reduction Method for Reliability Analysis in Spring Design (스프링 설계문제의 신뢰도 해석을 위한 크리깅 기반 차원감소법의 활용)

  • Gang, Jin-Hyuk;An, Da-Wn;Won, Jun-Ho;Choi, Joo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.422-427
    • /
    • 2008
  • This study is to illustrate the usefulness of Kriging Dimension Reduction Method(KDRM), which is to construct probability distribution of response function in the presence of the physical uncertainty of input variables. DRM has recently received increased attention due to its sensitivity-free nature and efficiency that considerable accuracy is obtained with only a few number of analyses. However, the DRM has a number of drawbacks such as instability and inaccuracy for functions with increased nonlinearity. As a remedy, Kriging interpolation technique is incorporated which is known as more accurate for nonlinear functions. The KDRM is applied and compared with MCS methods in a compression coil spring design problem. The effectiveness and accuracy of this method is verified.

  • PDF

A Study on the Adaptive Refinement Method for the Stress Analysis of the Meshfree Method (적응적 세분화 방법을 이용한 무요소법의 응력 해석에 관한 연구)

  • Han, Sang-Eul;Kang, Noh-Won;Joo, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.8-13
    • /
    • 2008
  • In this study, an adaptive node generation procedure in the radial point interpolation method is proposed. Since we set the initial configuration of nodes by subdivision of background cell, abrupt changes of inter-nodal distance between higher and lower error regions are unavoidable. This unpreferable nodal spacing induces additional errors. To obtain the smoothy nodal configuration, it's regenerated by local Delaunay triangulation algorithm This technique was originally developed to generate a set of well-shaped triangles and tetrahedra. To demonstrate the performance of proposed scheme, the results of making optimal nodal configuration with adaptive refinement method are investigated for stress concentration problems.

  • PDF

Development of Global Natural Vegetation Mapping System for Estimating Potential Forest Area (全球의 潛在的 森林面積을 推定하기 위한 植生圖 製作시스템 開發)

  • Cha, Gyung Soo
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.403-416
    • /
    • 1996
  • Global natural vegetation mapping (GNVM) system was developed for estimating potential forest area of the globe. With input of monthly mean temperature and monthly precipitation observed at weather stations, the system spherically interpolates them into 1°×1°grid points on a blobe, converts them into vegetation types, and produces a potential vegetation map and a potenital vegetation area. The spherical interpolation was based on negative exponential function fed from the constant radius stations with oval weighing method which is latitudinally elongated weighing in temperature and longitudinally elongated weighing in precipitation. The temperature values were corrected for altitude by applying a linear lapse-rate (0.65℃ / 100m) with reference to a built-in digital terrain map of the globe. The vegetation classification was based upon Koppen’s sKDICe. The potential forest area is estimated for 6.96 Gha (46.24%) of the global land area (15.05 Gha).

  • PDF

Continuous Location Tracking Algorithm for Moving Position Data

  • Ahn, Yoon-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.3
    • /
    • pp.979-994
    • /
    • 2008
  • Moving objects are spatio-temporal data that change their location or shape continuously over time. Generally, if continuously moving objects are managed by a conventional database management system, the system cannot properly process the past and future location which is not stored in the database. Up to now, for the purpose of location tracking which is not stored, the linear interpolation to estimate the past location has been usually used. It is suitable for the moving objects on linear route, not curved route. In this paper, we propose a past location tracking algorithm for a moving object on curved routes, and also suggest a future location tracking algorithm using some past location information. We found that the proposed location tracking algorithm has higher accuracy than the linear interpolation function.

  • PDF

A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow (고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법)

  • 이석원;윤재륜
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF

Load Flow Calculation by Neural Networks (신경회로적인 전력조류 계산법에 대한 연구)

  • Kim, Jae-Joo;Park, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.329-332
    • /
    • 1991
  • This paper presents an algorithm to reduce the time to solve Power Equations using a Neural Net. The Neural Net is trained with samples obtained through the conventional AC Load Flow. With these samples, the Neural Net is constructed and has the function of a linear interpolation network. Given arbitrary load level, this Neural Net generates voltage magnitudes and angles which are linear interpolation of real and reactive powers. Obtained voltage magnitudes and angles are substituted to Power Equations, Real and reactive powers are found. Thus, a new sample is generated. This new experience modifies weight matrix. Continuing to modify the weight matrix, the correct solution is achieved. comparing this method with AC Load flow, this method is faster. If we consider parallel processing, this method is far faster than conventional ones.

  • PDF

Decoupling Controller Design for H Performance Condition

  • Park, Tae-Dong;Choi, Goon-Ho;Cho, Yong-Seok;Park, Ki-Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.874-882
    • /
    • 2011
  • The decoupling design for the one-degree-of-freedom controller system is treated within the $H_{\infty}$ framework. In the present study, we demonstrate that the $H_{\infty}$ performance problem in the decoupling design is reduced into interpolation problems on scalar functions. To guarantee the properness of decoupling controllers and the overall transfer matrix, the relative degree conditions on the interpolating scalar functions are derived. To find the interpolating functions with relative degree constraints, Nevanlinna-Pick algorithm with starting function constraint is utilized in the present study. An illustrative example is given to provide details regarding the solution.