• Title/Summary/Keyword: Interpolation accuracy

Search Result 455, Processing Time 0.029 seconds

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms Based on GLONASS Code-Pseudorange Measurements

  • Kim, Mi-So;Park, Kwan-Dong;Won, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • The purpose of this study is to develop precise point positioning (PPP) algorithms based on GLONASS code-pseudorange, verify their performance and present their utility. As the basic correction models of PPP, we applied Inter Frequency Bias (IFB), relativistic effect, satellite antenna phase center offset, and satellite orbit and satellite clock errors, ionospheric errors, and tropospheric errors that must be provided on a real-time basis. The satellite orbit and satellite clock errors provided by Information-Analytical Centre (IAC) are interpolated at each observation epoch by applying the Lagrange polynomial method and linear interpolation method. We applied Global Ionosphere Maps (GIM) provided by International GNSS Service (IGS) for ionospheric errors, and increased the positioning accuracy by applying the true value calculated with GIPSY for tropospheric errors. As a result of testing the developed GLONASS PPP algorithms for four days, the horizontal error was approximately 1.4 ~ 1.5 m and the vertical error was approximately 2.5 ~ 2.8 m, showing that the accuracy is similar to that of GPS PPP.

DCT-Based Subpixel-Accuracy Motion Estimation Utilizing Shifting Matrix (Shifting Matrix를 이용한 DCT 기반 부화소 단위 움직임 예측 알고리즘)

  • Shin, Jae-Young;Ryu, Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.372-379
    • /
    • 2015
  • The latest video compression standard (such as H.264/AVC and HEVC) utilizes quarter-pel accuracy motion estimation in order to retain detailed motion information. Many sub-pixel motion estimation algorithms used in the spatial domain usually encounters increment of computational complexity due to embedded interpolation algorithm. In this paper, an approach to measure sub-pixel accuracy motion estimation in frequency domain using shifting matrix is proposed. Complexity can be reduced utilizing shifting matrix algorithm in frequency domain and simulation results demonstrate not only higher PSNR but lower bit rates than spatial domain algorithms.

A Study on the Accuracy of Calculating Slopes for Mountainous Landform in Korea Using GIS Software - Focused on the Contour Interval of Source Data and the Resolution - (GIS Software를 이용한 한국 산악 지형의 경사도 산출 정확도에 관한 연구 -원자료의 등고선 간격과 해상력을 중심으로-)

  • 신진민;이규석
    • Spatial Information Research
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1999
  • The DTM(Digital Terrain Model) in GIS(Geographical Information System) shows the elevation from interpolation using data points surveyed. In panoramic flat landform, pixel size, resolution of source data may not be the problem in using DTM However, in mountainous landform like Korea, appropriate resolution accuracy of source data are important factors to represent the topography concerned. In this study, the difference in contour interval of source data, the resolution after interpolation, and different data structures were compared to figure out the accuracy of slope calculation using DTM from the topographic maps of Togyusan National Park Two types of GIS softwares, Idrisi(grid) ver. 2.0 using the altitude matrices and ArcView(TIN) ver. 3.0a using TIN were used for this purpose. After the analysis the conclusions are as follows: 1) The coarser resolution, the more smoothing effect inrepresenting the topography. 2) The coarser resolution the more difference between the grid-based Idrisi and the TIN-based ArcView. 3) Based on the comparison analysis of error for 30 points from clustering, there is not much difference among 10, 20, 30 m resolution in TIM-based Airview ranging from 4.9 to 6.2n However, the coarser resolution the more error for elevation and slope in the grid-based Idrisi. ranging from 6.3 to 10.9m. 4) Both Idrisi and ArcView could net consider breaklines of lanform like hilltops, valley bottoms.

  • PDF

Runoff of an Small Urban Area Using DEM Accuracy Analysis (DEM의 정확도 분석에 의한 도시 소유역의 유출해석)

  • Park, Jin-Hyung;Lee, Kwan-Soo;Lee, Sam-No
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.1
    • /
    • pp.28-38
    • /
    • 2004
  • The purpose of this study is to analyze the urban hydrologic state by the use of GIS, resolution and interpolation. The determination coefficient($R^2$) and Regression Formula were derived from the contour of digital map for the accuracy, and DEM data was made by using TIN interpolation by the size of the grid. By using the observed DEM data, topographical factors were extracted from the small basin, size, the width of a basin and the slope, and were applied in the urban runoff model. Through the model, we tried to find out the most suitable runoff model in a small basin of Yosu-Munsu area. As a result of applying models to the drainage considered, the runoff hydrograph estimated by SWMM model was closer to the observed one than that estimated by ILLUDAS model. The difference between the runoff hydrograph by SWMM and the observed one is maximum error of 19%, minimum error of 5% and average error of 13%. The influence of duration in contrast to pick time is insignificant in a urban small basin. As a conclusion of this study, SWMM model was more suitable and applicable for the urban runoff model than ILLUDAS model due to its accuracy and various abilities.

  • PDF

Calculates of GPS Satellite Coordinates Using Rapid and Ultra-Rapid Precise Ephemerides (신속정밀제도력과 초신속정밀궤도력을 이용한 GPS 위성좌표 계산)

  • Park Joung Hyun;Lee Young Wook;Lee Eun Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.4
    • /
    • pp.383-390
    • /
    • 2004
  • IGS provides so accute a final precise ephmerides which is offered in the 13rd, and it also offers a rapid precise ephmerides for more prompt application and an ultra-rapid precise ephmerides for real-time application. The purpose of this study is to analyze the accuracy of a rapid precise ephemerides and an ultra-rapid precise ephemerides based on a final precise ephmerides and determine the degree of the Lagrange Interpolation which needs to decide the location of a satellite. As the result of this study, the root mean square error of x,y,z coordinates of a rapid precise ephemerides was $\pm$0.0l6m or so, and the root mean square error of an observed ultra-rapid precise ephemerides was approximately $\pm$0.024m. The root mean square error of an ultra-rapid precise ephemerides predicted for 24 hours was $\pm$0.07m or so and the one of an ultra-rapid precise ephemerides predicted for 6 hours was $\pm$0.04m or so. Therefore, I could figure out that it had higher accuracy than a broadcast ephemerides. Also, in case that the location of a satellite was calculated with the method of the Lagrange Interpolation, it was confirmed that using the 9th order polynomial was efficient.

DSM Generation and Accuracy Analysis from UAV Images on River-side Facilities (UAV 영상을 활용한 수변구조물의 DSM 생성 및 정확도 분석)

  • Rhee, Sooahm;Kim, Taejung;Kim, Jaein;Kim, Min Chul;Chang, Hwi Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.183-191
    • /
    • 2015
  • If the damage analysis on river-side facilities such as dam, river bank structures and bridges caused by disasters such as typhoon, flood, etc. becomes available, it can be a great help for disaster recovery and decision-making. In this research, We tried to extract a Digital Surface Model (DSM) and analyze the accuracy from Unmanned Air Vehicle (UAV) images on river-side facilities. We tried to apply stereo image-based matching technique, then extracted match results were united with one mosaic DSM. The accuracy was verified compared with a DSM derived from LIDAR data. Overall accuracy was around 3m of absolute and root mean square error. As an analysis result, we confirmed that exterior orientation parameters exerted an influence to DSM accuracy. For more accurate DSM generation, accurate EO parameters are necessary and effective interpolation and post process technique needs to be developed. And the damage analysis simulation with DSM has to be performed in the future.

Feature Ranking for Detection of Neuro-degeneration and Vascular Dementia in micro-Raman spectra of Platelet (특징 순위 방법을 이용한 혈소판 라만 스펙트럼에서 퇴행성 뇌신경질환과 혈관성 인지증 분류)

  • Park, Aa-Ron;Baek, Sung-June
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.4
    • /
    • pp.21-26
    • /
    • 2011
  • Feature ranking is useful to gain knowledge of data and identify relevant features. In this study, we proposed a use of feature ranking for classification of neuro-degeneration and vascular dementia in micro-Raman spectra of platelet. The entire region of the spectrum is divided into local region including several peaks, followed by Gaussian curve fitting method in the region to be modeled. Local minima select from the subregion and then remove the background based on the position by using interpolation method. After preprocessing steps, significant features were selected by feature ranking method to improve the classification accuracy and the computational complexity of classification system. PCA (principal component analysis) transform the selected features and the overall features that is used classification with the number of principal components. These were classified as MAP (maximum a posteriori) and it compared with classification result using overall features. In all experiments, the computational complexity of the classification system was remarkably reduced and the classification accuracy was partially increased. Particularly, the proposed method increased the classification accuracy in the experiment classifying the Parkinson's disease and normal with the average 1.7 %. From the result, it confirmed that proposed method could be efficiently used in the classification system of the neuro-degenerative disease and vascular dementia of platelet.

Accuracy Enhancement using Network Based GPS Carrier Phase Differential Positioning (네트워크 기반의 GPS 반송파 상대측위 정확도 향상)

  • Lee, Yong-Wook;Bae, Kyoung-Ho
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.111-121
    • /
    • 2007
  • The GPS positioning offer 3D position using code and carrier phase measurements, but the user can obtain the precise accuracy positioning using carrier phase in Real Time Kinematic(RTK). The main problem, which RTK have to overcome, is the necessary to have a reference station(RS) when using RTK should be generally no more than 10km on average, which is significantly different from DGPS, where distances to RS can exceed several hundred kilometers. The accuracy of today's RTK is limited by the distance dependent errors from orbit, ionosphere and troposphere as well as station dependent influences like multipath and antenna phase center variations. For these reasons, the author proposes Network based GPS Carrier Phase Differential Positioning using Multiple RS which is detached from user receiver about 30km. An important part of the proposed system is algorithm and software development, named DAUNet. The main process is corrections computation, corrections interpolation and searching for the integer ambiguity. Corrections computation of satellite by satellite and epoch by epoch at each reference station are calculated by a Functional model and Stochastic model based on a linear combination algorithm and corrections interpolation at user receiver are used by area correction parameters. As results, the users can obtain the cm-level positioning.

  • PDF

Enhancement of Geomorphology Generation for the Front Land of Levee Using Aerial Photograph (항공영상을 연계한 하천 제외지의 지형분석 개선 기법)

  • Lee, Geun Sang;Lee, Hyun Seok;Hwang, Eui Ho;Koh, Deuk Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.407-415
    • /
    • 2008
  • This study presents the methodology to link with aerial photos for advancing the accuracy of topographic survey data that is used to calculate water volume in urban stream. First, GIS spatial interpolation technique as Inverse Distance Weight (IDW) and Kriging was applied to construct the terrain morphology to the sand-bar and grass area using cross-sectional survey data, and also validation point data was used to estimate the accuracy of created topographic data. As the result of comparison, IDW ($d^{-2}_{ij}$, 2nd square number) in Sand-bar area and Kriging Spherical model in grass area showed more efficient results in the construction of topographic data of river boundary. But the differences among interpolation methods are very slight. Image classification method, Minimum Distance Method (MDM) was applied to extract sand-bar and grass area that are located to river boundary efficiently and the elevation value of extracted layers was allocated to the water level point value. Water volume with topographic data from aerial photos shows the advanced accuracy of 13% (in sand-bar) and 12% (in grass) compared to the water volume of original terrain data. Therefore, terrain analysis method in river linking with aerial photos is efficient to the monitoring about sand-bar and grass area that are located in the downstream of Dam in flooding season, and also it can be applied to calculate water volume efficiently.

Development of Onboard Orbit Generation Algorithm for GEO Satellite (정지궤도 위성의 탑재 궤도 생성 알고리듬 개발)

  • Yim, Jo Ryeong;Park, Bong-Kyu;Park, Young-Woong;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.7-17
    • /
    • 2014
  • This technical paper deals with development of on-board orbit generation algorithm for GEO Satellite. This paper presents the research analysis results performed in order to improve the accuracy of the existing algorithm used for generating real-time orbit information for GEO satellite. The error impact on orbit accuracy due to the orbit error sources were analyzed with the algorithm suggested by this research. As a result of the analyses, it is found that the initial orbit should be determined with an accuracy of less than 50 m and the reference position angle error for the ground station and the satellite should be maintained within ${\pm}0.0025deg$ in order to meet the orbit accuracy specification. The development of on-board flight software based on the new algorithm was accomplished and the performance verification is ongoing by using a software based performance verification tool.